International Comprehensive Ocean-Atmosphere Data Set (ICOADS)	Release 2.5
The International Maritime Meteorological Archive (IMMA) Format	3 September 2010
Document name:	R2.5-imma_short
Note: Supps. C-D only as excerpted from the larger background document, R2.5-imma.	_

Supplement C. Record Types

The IMMA Core (Table C0) forms the common front-end for all record types. By itself, the Core, which is divided into location and regular sections, forms a useful abbreviated record type incorporating many of the most commonly used data elements in standardized form (drawn from the fields to be agreed internationally, listed in Supp. D). Concatenating one or more "attachments" (attm) after the Core creates additional record types. So far, the following attms have been defined (or proposed):

Table C1: ICOADS attm	(65 characters)
Table C2: IMMT-2/FM 13 attm	(76 characters)
Table C3: Model quality control attm	(66 characters)
Table C4: Ship metadata attm	(57 characters)
Table C5: Historical attm	(proposed)
Table C6: Supplemental data attm	(length may vary)

The following are examples of the record types that can be constructed from the Core plus these attachments (where Table numbers are used to indicate the corresponding attm):

• Core:	
C0	(108 characters)
• ICOADS-standard structure (used for	or Release 2.5, see Supp. E):
C0 + C1 + C2 + C3 + C4 + C6	(372 characters, before C6)
• NCDC-variant structure (used altern	atively for Release 2.5, see Supp. E):
C0 + C1 + C2 + C3 + C6	(315 characters, before C6)
 historical record: 	
C0 + C5 + C6	(proposed)

Inclusion of the attm count (*ATTC*) field in the Core, and of the attm ID (*ATTI*) and attm data length (*ATTL*) fields at the beginning of each attm, enables computer parsing of the records. Thus additional variations on these basic record types are implemented by inclusion or omission of attms, and new attms can be defined in the future as needed for new data or metadata requirements.

Table C0. IMMA Core. The columns in this table contain the following information:

1: Field number. Field numbering runs consecutively from Table C0 through Table C6 (except the proposed Table C5 fields) to correspond with data structures in the rdimma0 software.

2: Length (Len.) in characters (i.e. bytes).

3-4: Abbreviation (Abbr.) for each element (or field), and a brief description.

5-6: For fields with a numeric range, the minimum (Min.) and maximum (Max.) are indicated. In other cases the range and configuration are listed as: "a" for alphabetic (A-

Z), "b" for alphanumeric (strictly 0-Z), "c" for alphanumeric plus other characters, or "u" for undecided form (only for fields that are currently unused).

7: Units of data and related WMO Codes. Information in parentheses usually relates the proposed field to a field from Supp. B, Table B1 (if applicable): WMO Code symbolic letters are listed, or "•" followed by a field number from Table B1 in the absence of symbolic letters. This information is prefixed by " Δ " to highlight field configurations that are extended in range or modified in form from presently defined WMO representations.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
			Location section (45 characters):			
1	4	YR	year UTC	1600	2024	(AAAA)
2	2	МО	month UTC ¹	1	12	(MM)
3	2	DY	day UTC ¹	1	31	(YY)
4	4	HR	hour UTC ¹	0	23.99	0.01 hour (∆ GG)
5	5	LAT	latitude	-90.00	90.00	$0.01^{\circ}N (\Delta L_aL_aL_a)$
6	6	LON	longitude ¹	-179.99	359.99	$0.01^{\circ}E(\Delta L_{o}L_{o}L_{o}L_{o})$
				0.00 179.99	359.99 180.00	(ICOADS convention) (NCDC-variant convention)
7	2	IM	IMMA version	0	99	$(\Delta \bullet 65)$
8	1	ATTC	attm count	0	9	
9	1	ΤI	time indicator	0	3	
10	1	LI	latitude/long. indic.	0	6	
11	1	DS	ship course	0	9	(D _s)
12	1	VS	ship speed	0	9	(ΔV_{S})
13	2	NID	national source indic.1	0	99	
14	2	11	ID indicator	0	10	
15	9	ID	identification/call sign	С	С	(∆ ∙42)
16	2	C1	country code	b	b	(∆ ∙43)
			Regular section (63 characters):			
17	1	DI	wind direction indic.	0	6	
18	3	D	wind direction (true)	1	362	°, 361-2 (∆ dd)
19	1	WI	wind speed indicator	0	8	(Δ i _W)
20	3	W	wind speed	0	99.9	0.1 m/s (∆ ff)
21	1	VI	VV indic.	0	2	(∆ •9)
22	2	VV	visibility	90	99	(VV)
23	2	WW	present weather	0	99	(ww)
24	1	W1	past weather	0	9	(W ₁)
25	5	SLP	sea level pressure	870.0	1074.6	0.1 hPa (∆ PPPP)
26	1	Α	characteristic of PPP	0	8	(a)
27	3	PPP	amt. pressure tend.	0	51.0	0.1 hPa (ppp)
28	1	IT	indic. for temperatures	0	9	(Δ İ _T)
29	4	AT	air temperature	-99.9	99.9	0.1°C (Δ s _n , TTT)
30	1	WBTI	WBT indic.	0	3	(Δs_w)
31	4	WBT	wet-bulb temperature	-99.9	99.9	$0.1^{\circ}C (\Delta s_w, T_bT_bT_b)$
32	1	DPTI	DPT indic.	0	3	(ΔS_t)
33	4	DPT	dew-point temperature	-99.9	99.9	$0.1^{\circ}C (\Delta s_t, T_dT_dT_d)$
34	2	SI	SST meas. method	0	12	(∆ •30)

<u>No.</u>	Len.	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
35	4	SST	sea surface temp.	-99.9	99.9	$0.1^{\circ}C (\Delta s_n, T_wT_wT_w)$
36	1	Ν	total cloud amount	0	9	(N)
37	1	NH	lower cloud amount	0	9	(N _h)
38	1	CL	low cloud type	0	9, "A"	(Δ C _L)
39	1	HI	H indic.	0	1	(∆ •9)
40	1	Н	cloud height	0	9, "A"	(Δ h)
41	1	СМ	middle cloud type	0	9, "A"	(Δ C _M)
42	1	СН	high cloud type	0	9, "A"	(Δ C _H)
43	2	WD	wave direction	0	38	
44	2	WP	wave period	0	30, 99	seconds (P _W P _W)
45	2	WH	wave height	0	99	(HwHw)
46	2	SD	swell direction	0	38	(d _{W1} d _{W1})
47	2	SP	swell period	0	30, 99	seconds (Pw1Pw1)
48	2	SH	swell height	0	99	(H _{W1} H _{W1})

1. Fields differing from the ICOADS-standard representation in the NCDC-variant format (see Supps. D-E for further details). For *MO*, *DY*, and *HR*, the NCDC-variant format uses leading zeros as an exception to the "blank left-fill" aspect of the ICOADS-standard representation for numeric data.

Table C1. ICOADS attm	(column de	escriptions as fo	r Table C0).
-----------------------	------------	-------------------	--------------

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
49	2	ATTI	attm ID			Note: set ATTI=1
50	2	ATTL	attm length			Note: set ATTL=65
			Box elements (6 characters):			
51	1	BSI	box system indicator	u	u	(currently set to missing)
52	3	B10	10° box number	1	648	(ICOADS BOX10 system)
53	2	B1	1° box number	0	99	
			Processing elements (17 characters):			
54	3	DCK	deck	0	999	
55	3	SID	source ID	0	999	
56	2	PT	platform type	0	15	
57	2	DUPS	dup status	0	14	
58	1	DUPC	dup check	0	2	
59	1	тс	track check	0	1	
60	1	PB	pressure bias	0	2	
61	1	WX	wave period indicator	1	1	
62	1	SX	swell period indicator	1	1	
63	2	C2	2nd country code	0	40	

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
			QC elements (38 characters):			
64-75	1×12	SQZ- DQA ¹	adaptive QC flags	1	35	base36 (12 flags) ²
76	1	ND	night/day flag	1	2	
77-82	1×6	SF-RF ¹	trimming flags	1	15	base36 (6 flags) ²
83-96	1×14	ZNC- TNC ¹	NCDC-QC flags	1	10	base36 (14 flags) ²
97	2	QCE^3	external (e.g. MEDS)	0	63	integer encoding (6 flags)
98	1	LZ	landlocked flag	1	1	
99	2	QCZ ³	source exclusion flags	0	31	integer encoding (5 flags)

1. A set of flags (elaborated briefly as follows; see R2.5-stat_trim [note: in preparation] for detailed information) is stored in each of these element lengths. The first letter of each such QC flag indicates the applicable fields(s) (or if the QC applies to an entire report), according to the following general scheme (referring to field abbreviations from Table C1): A=AT, B=VV, C=clouds, D=DPT, E=wave, F=swell, G=WBT, P=SLP, R=relative humidity (or possibly other humidity variables for RE^+), S=SST, T=A and PPP, U or V=wind U- or V-component, W=wind, X=WX, Y=W1, Z=entire report. The lists of flag abbreviations are then:

- Adaptive QC flags: SQZ, SQA, AQZ, AQA, UQZ, UQA, VQZ, VQA, PQZ, PQA, DQZ, DQA (two flags
- \times 12 variables).
- Trimming flags: SF, AF, UF, VF, PF, RF (one flag × six variables).
- NCDC-QC flags: ZNC, WNC, BNC, XNC, YNC, PNC, ANC, GNC, DNC, SNC, CNC, ENC, FNC, TNC one flag × 14 variables).

2. *R2.5-stat_trim* provides further information about how to convert the coded (base36) values stored in these flags into true (floating-point) values (handled automatically by rdimma0).

3. Handled as a single element by the rdimma0 program, but actually holds a set of flags (elaborated as follows), which must be decoded separately. Using the 1st-letter naming scheme described in the first footnote, the abbreviations for the flags stored in *QCE* are: *ZE*, *SE*, *AE*, *WE*, *PE*, *RE*; and those stored in *QCZ* are: *SZ*, *AZ*, *WZ*, *PZ*, *RZ*. Flag *RE*, presently unused, has been set aside for possible future use. *R2.5-stat_trim* provides further information about how to decode the information stored within *QCE* and *QCZ*.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
100	2	ATTI	attm ID			Note: set ATTI=2
101	2	ATTL	attm length			Note: set ATTL=76
			Common for IMMT-2/-1 (52 characters):			
102	1	OS	observation source	0	6	(•40)
103	1	OP	observation platform	0	9	(•41)
104	2	FM	FM code version	0	8	(∆ ●64)
105	1	IX	station/weather indic.	1	7	(i _x)
106	1	W2	2nd past weather	0	9	(W ₂)
107	1	SGN ¹	significant cloud amount	0	9	(N _S ; ref. Table B3)
108	1	SGT ¹	significant cloud type	0	9, "A"	(C; ref. Table B3)
109	2	SGH ¹	significant cloud height	0	99	(h _S h _S ; ref. Table B3)
110	1	WMI	indic. for wave meas.	0	9	(•31)
111	2	SD2	dir. of second. swell	0	38	(d _{W2} d _{W2})
112	2	SP2	per. of second. swell	0	30, 99	(P _{W2} P _{W2})
113	2	SH2	ht. of second. swell	0	99	(H _{W2} H _{W2})
114	1	IS	ice accretion on ship	1	5	(I _s)
115	2	ES	thickness of I _s	0	99	cm (E _s E _s)
116	1	RS	rate of Is	0	4	(R _s)
117	1	IC1	concentration of sea ice	0	9, "A"	(Δc_i)
118	1	IC2	stage of development	0	9, "A"	(ΔS_i)
119	1	IC3	ice of land origin	0	9, "A"	(Δb_i)
120	1	IC4	true bearing ice edge	0	9, "A"	(ΔD_i)
121	1	IC5	ice situation/trend	0	9, "A"	(Δz_i)
122	1	IR	indic. for precip. data	0	4	(i _R)
123	3	RRR	amount of precip.	0	999	(RRR)
124	1	TR	duration of per. RRR	1	9	(t _R)
125	1	QCI	quality control indic.	0	9	(•45)
126- 145	1×20	QI1-20	QC indic. for fields	0	9	(Q ₁ -Q ₂₀)
			New for IMMT-2 (20 characters):			
146	1	Q/21	MQCS version	0	9	(Q ₂₁)
147	3	HDG	ship's heading	0 ²	360	0, ° (HDG)
148	3	COG	course over ground	0	360	0, ° (COG)
149	2	SOG	speed over ground	0	99	kt (SOG)
150	2	SLL	max.ht.>Sum. load In.	0	99	m (SLL)
151	3	SLHH	dep. load ln.: sea lev.	-99	99	m (s∟hh)
152 153	3 3	RWD RWS	relative wind direction relative wind speed	1 0	362 99.9	°, 361-2 ³ (ref. <i>D</i>) 0.1 m/s (ref. <i>W</i>)

	Table C2. IMMT-2/FM	13 attm (column de	escriptions as for Table C0).
--	---------------------	--------------------	-------------------------------

2. Zero is documented to mean "no movement," but has been suggested should not be used (see Supp. D). 3. Special code 362 for "variable, or all directions" is allocated in IMMA, but IMMT does not presently contain a corresponding configuration for RWS (see Supp. D).

Table C3. Model quality control attm (column descriptions as for Table C0). For reference, the Units column also includes (following any units information) the current UK Met Office BUFR element names.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
154	2	ATTI	attm ID			Note: set ATTI=3
155	2	ATTL	attm length			Note: set ATTL=66
			GTS bull. header fields (10 characters):			
156	4	CCCC	collecting centre	а	а	COLTN_CNTR
157	6	BUID	bulletin ID	b	b	BLTN_IDNY
			Model comp. elements (52 characters):			
158	5	BMP	background (bckd.) SLP	870.0	1074.6	0.1 hPa; BCKD_MSL_PESR
159	4	BSWU	bckd. wind U-comp.	-99.9	99.9	0.1 m/s; BCKD_SRFC_WIND_U
160	4	SWU	derived wind U-comp.	-99.9	99.9	0.1 m/s; SRFC_WIND_U
161	4	BSWV	bckd. wind V-comp.	-99.9	99.9	0.1 m/s; BCKD_SRFC_WIND_V
162	4	SWV	derived wind V-comp.	-99.9	99.9	0.1 m/s; SRFC_WIND_V
163	4	BSAT	bckd. air temperature	-99.9	99.9	0.1°C; BCKD_SRFC_AIR_TMPR
164	3	BSRH	bckd. relative humidity	0	100	%; BCKD_SRFC_RLTV_HUMDY
165	3	SRH	(derived) relative humidity	0	100	%; SRFC_RLTV_HUMDY
166	1	SIX	derived stn./wea. indic.	2	3	(subset of <i>IX</i> , field 105; unused)
167	4	BSST	bckd. SST	-99.9	99.9	0.1°C; BCKD_SEA_SRFC_TMPR
168	1	MST	model surface type	0	9	(UK 008204); MODL_SRFC_TYPE
169	3	MSH	model height of surface	0	999	m; MODL_SRFC_HGHT
170	4	BY	bckd. year	0	9999	year; BCKD_YEAR
171	2	BM	bckd. month	1	12	month; BCKD_MNTH
172	2	BD	bckd. day	1	31	day; BCKD_DAY
173	2	BH	bckd. hour	0	23	hour; BCKD_HOUR
174	2	BFL	bckd. forecast length	0	99	hours (note: erroneous); BCKD_FRCT_LNGH

^{1.} These (strictly historical) fields should always be missing (see Supp. D).

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
175	2	ATTI	attm ID			Note: set ATTI=4
176	2	ATTL	attm length			Note: set ATTL=57
			Ship metadata elements (53 characters):			
177	2	C1M	recruiting country	а	а	(∆ ∙43)
178	2	OPM	type of ship (programme)	0	99	(code unlike OP)
178	2	KOV	kind of vessel	с	С	
180	2	COR	country of registry	а	а	(∆ ∙43)
181	3	тов	type of barometer	С	С	
182	3	тот	type of thermometer	с	С	
183	2	EOT	exposure of thermometer	с	С	
184	2	LOT	screen location	С	С	
185	1	тон	type of hygrometer	с	С	
186	2	EOH	exposure of hygrometer	С	С	
187	3	SIM	SST meas. method	с	С	(code unlike SI)
188	3	LOV	length of vessel	0	999	m
189	2	DOS	depth of SST meas.	0	99	m
190	3	HOP	height of visual observation platform	0	999	m
191	3	НОТ	height of AT sensor	0	999	m
192	3	HOB	height of barometer	0	999	m
193	3	HOA	height of anemometer	0	999	m
194	5	SMF	source metadata file	0	99999	e.g. "19991" 1st Q 1991
195	5	SME	source meta. element	0	99999	line number in file
196	2	SMV	source format version	0	99	to be defined

Table C4. Ship metadata attm (column descriptions as for Table C
--

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
(tbd)	2	ATTI	attm ID			Note: set ATTI=5
"	2	ATTL	attm length			Note: set ATTL=(tbd)
			Historical data fields (>19 characters):			
"	1	WFI	WF indic.	u	u	
"	2	WF	wind force	0	12	
"	1	XWI	XW indic.	u	u	
"	3	XW	wind speed (ext. W)	0	99.9	0.1 m/s
"	1	XDI	XD indic.	u	u	
"	2	XD	wind dir. (ext. D)	u	u	
"	1	SLPI	SLP indic.	u	u	
"	1	TAI	TA indic.	u	u	
"	4	TA	SLP att. thermometer	-99.9	99.9	ref. AT
"	1	XNI	XN indic.	u	u	
"	2	XN	cloud amt. (ext. N)	u	u	
(plus a	dditional	elements ti	bd)			

Table C5. Historical attm (proposed; column descriptions as for Table C0). *ATTI* is assigned, and *ATTL* and field numbering to be decided (*tbd*).

Table C6. Supplemental data attm (column descriptions as for Table C0). If *ATTL*=0 (unspecified length), this attm must appear at the end of the record, and the record terminate with a line feed. For the VOSClim record type, this attm stores the original input data string in Ascii with *ATTL*=0 and *ATTE*=missing. (Note: if future requirements arise within the VOSClim record type, or for other record types, *ATTL* and *ATTE* can be adjusted accordingly.)

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code)</u>
197	2	ATTI	attm ID			Note: set ATTI=99
198	2	ATTL	attm length			Note: set ATTL=0
199	1	ATTE	attm encoding			Note: set ATTE=missing
			Supplemental data (format determined by data source):			
200		SUPD ¹	supplemental data	С	С	

1. The length of the supplemental data is ATTL - 5 if ATTL > 0, or it may be variable if ATTL = 0.

Supplement D. Field Configurations

This supplement provides configuration details for the individual fields listed in Supp. C. References to external information include the WMO *Manual on Codes* (2009a) and its Codes and Regulations governing e.g. the SHIP (FM 13) GTS code. Background notes indented below field descriptions provide additional usage or technical information, e.g. comparing field configurations with other formats, such as IMMT (Supp. B), COADS *Release 1* (Slutz et al. 1985), or more recent LMR (<u>http://icoads.noaa.gov/e-doc/Imr</u>). Further detailed technical notes related more specifically to ICOADS, and its current Release 2.5 (R2.5) (Woodruff et al. 2010) appear enclosed in [square brackets].

The IMMA field abbreviations are simple alphabetic strings (plus in some cases numeric suffixes), based generally on GTS (or IMMT) symbolic letters (if defined) but without subscripts. These are listed in *UPPER-CASE*, for broad computer portability. As discussed in Supp. A, symbolic abbreviations already provide an important means of communication about the fields and data among Member countries and end-users. However, a transition away from subscripts is recommended to facilitate computerized implementation (e.g. headings for listings of the data).

The configurations of numeric fields were developed on the basis of representations readily input and output by computer software. Fields are right justified within the specified field-widths (Supp. C), and to reduce data-volume decimal points are implicit (e.g. –99.9 is represented as –999). For signed numeric data, the plus sign ("+") is omitted, and the minus sign ("–") immediately prefixes the numeric portion (i.e. blank left-fill⁵). These conventions have the advantage that numeric data can be readily input without separate steps to handle IMM sign positions (0=positive, 1=negative), and without parsing to ensure that a field does not contain non-numeric characters (e.g. "/").

In a delimited format, a universal missing value (e.g. –9999.99) could be selected outside the range of all data (except possibly for alphanumeric fields). In contrast, the fixed-field IMMA format contains different field-widths so a single numeric value is unworkable. A convention such as all nines filling each indicated field width also is impractical, e.g. because many of the 1-character fields have extant numeric values covering the range 0-9.

Therefore, blanks are used in IMMA as the universal representation for missing data. However, it is important to note that Fortran for example considers blanks (by default) to be equivalent to zero, thus to ensure correctness the processing must first parse a field as characters to ensure that it is not entirely blank. Machine-transportable Fortran software to help read (and optionally write) the IMMA data ("rdimma0") is available (http://icoads.noaa.gov/software/).

Some field configurations (e.g. for the historical attm) are undecided, and will benefit from future feedback and discussion (including possible alternative implementation options noted as part of the background information for some fields). In other cases existing (originally LMR-based) configurations have been utilized. These provisional configurations may warrant modification or expansion after international consideration.

⁵ As an exception, the NCDC-variant record uses leading zeros in fields *MO*, *DY*, and *HR*. Additional differences between the NCDC-variant record and the ICOADS-standard record are described in Supp. E.

Core (C0)

Location section

year UTC	(four digits)
month UTC	(1=January, 2=February,, 12=December)
day UTC	(1-31)
hour UTC	(0.00 to 23.99)
in IMMT-4), M	s for IMMT-4, except <i>HR</i> . In the NCDC-variant record (as well as O, DY, and HR will include leading zero-fill, as applicable (e.g. VOS data typically are reported to nearest whole hour, but the
extended resol data, WMO (20	lution is needed, e.g. for storage of drifting buoy data. For VOS 009a) Reg. 12.1.6 states: "The actual time of observation shall be ch the barometer is read."
	month UTC day UTC hour UTC Background: A in IMMT-4), M 01=January). extended reso data, WMO (20

5) LAT latitude

6) LON longitude

Position to hundredths of a degree +N or –S (measured north or south of the equator) and +E or –W (measured east or west of the Greenwich Meridian). The longitude range (–179.99° to 359.99°) specified in Supp. C (Table C0) encompasses two distinct longitude conventions: 0° to 359.99° (i.e. 0°E, 0.01°E, ..., 359.98°E, 359.99°E; ICOADS convention) and –179.99° to 180.00° (i.e. 179.99°W, 179.98°W, ..., 179.99°E, 180.00°E; NCDC-variant convention).

Background: The two longitude conventions are desirable for different applications and archival requirements. However 0° to 359.99° is generally recommended, because it is the simplest formulation and thus helps reduce the likelihood of location errors. Extended resolutions are needed in comparison to the IMMT-4 format, e.g. for drifting buoy data. Disallowing 360.00 and -180.00° ensures that meridians are uniquely represented within the convention range (i.e. avoiding: 0°/360.00°; 180.00°/-180.00°). However, even if IMMA records are stored in a mixture of these conventions, all longitude values can be accurately interpreted because the overall range for longitude reserves negative for the western hemisphere. Organizing YR, MO, DY, HR, LAT, and LON in sequence can facilitate synoptic sort operations. Characters (N, S, E, W) could alternatively have been used in place of sign for both LAT and LON, but this complicates computer processing and therefore was deemed not advisable, as was usage of conventions for quadrant (WMO Code 3333 as used in IMMT-4) or octant numbers (WMO 2009a notes under Code 3333 how the choice of quadrant is left to the observer under specific circumstances such as along the Equator).

7) IM IMMA version

8) ATTC attm count

- 0 provisional version (the current version)
- 1 first internationally agreed version
- 2 second internationally agreed version

etc.

ATTC provides the attm count:

- 0 abbreviated record (no attm)
 - 1 one attm
 - 2 two attms

etc.

Background: These fields are positioned near the front of the record to allow computerized input and interpretation (e.g. of different IMMA versions), but after *LON* so as not to interfere with sort operations. The proposed configuration is similar to the IMMT-4 field "IMMT version."

9) TI time indicator

10) LI latitude/longitude indicator

TI preserves the incoming precision of time fields:

- 0 nearest whole hour
- 1 hour to tenths
- 2 hour plus minutes
- 3 high resolution (e.g. hour to hundredths)

LI preserves the precision at which *LAT* and *LON* were recorded or translated from, or if they were derived later by interpolation between known positions:

- 0 degrees and tenths
- 1 whole degrees
- 2 mixed precision
- 3 interpolated
- 4 degrees and minutes
- 5 high resolution data (e.g. degrees to seconds)
- 6 other

Background: *TI* and *LI* match original LMR configurations, except that *LI*=2 was described there as "non random tenths" (a type of mixed precision; see *Release* 1, supp. F). [Note: No indication is available in *TI* for quasi-instantaneous vs. time-period averaged data (e.g. daily averages from PMEL deck 145).]

11) DS ship course

12) VS ship speed

WMO Code 0700 for true direction of resultant displacement of the ship during the three hours preceding the time of observation (i.e. ship's course (true) made good):

	· ·
0 – stationary (ship hove to)	5 – SW
1 – NE	6 – W
2 – E	7 – NW
3 – SE	8 – N
4 – S	9 – unknown
Code 1151 for ship's average	speed made

WMO Code 4451 for ship's average speed made good during the three hours preceding the time of observation (beginning 1 January 1968):

0 – 0 knots	ļ	5 – 21-2	5 knots

- 1 1-5 knots 6 26-30 knots
- 2 6-10 knots 7 31-35 knots
- 3 11-15 knots 8 36-40 knots
- 4 16-20 knots 9 over 40 knots

Prior to 1 January 1968 a different code for *VS*, also with range 0-9, applied (Met Office 1948):

- 0 0 knots 5 13-15 knots
- 1 1-3 knots 6 16-18 knots
- 2 4-6 knots 7 19-21 knots
- 3 7-9 knots 8 22-24 knots
- 4 10-12 knots 9 over 24 knots

Background: As was originally the case in LMR, both the old and new VS codes are stored in the same field, to be differentiated by date (but *DS* and *VS* were named *SC* and *SS* in LMR). In IMMPC format documentation, Code 4451 may

have been used to refer to both the old and new VS codes. Further research is needed to clarify the timing and details of that apparent code change.

13) *NID* national source indicator

A field available for national use in identifying data subsets.

Background: IMMT has a similar 1-character field for "national use" (see Supp. B, Table B1), which thus far has not been translated into this (or another) IMMA field. *NID* was set to "1" by the Data Assembly Center (DAC; at NOAA/NCDC) for identified VOSClim ships, or to missing otherwise. [Note: Presently in R2.5 not all VOSClim ships were identified in all data sources, such that this indicator was set only sporadically. For internal NCDC processing purposes, R2.5 data distributed by NCDC have been reformatted (with respect to the ICOADS-standard data) to set all reports with *NID*=missing, to *NID*=2; and all reports with *NID*=1, to *NID*=3. R2.5 data obtained in the NCDC-variant format should therefore be identifiable by *NID*=2 or *NID*=3, whereas R2.5 data obtained in the ICOADS-standard format should be identifiable by *NID*=missing or *NID*=1 (not applicable to other marine data obtained from NCDC, which will have *NID*=missing or *NID*=1).]

14) II ID indicator

15) ID identification/call sign

II indicates whether a call sign or some other sort of identification is contained in the *ID* field (and in R2.5 data, *II* should always be extant when *ID* information exists; whereas *II* should always be missing if *ID* is missing):

- 0 ID present, but unknown type
- 1 ship, Ocean Station Vessel (OSV), or ice station call sign
- 2 generic ID (e.g. SHIP, BUOY, RIGG, PLAT)
- 3 WMO 5-digit buoy number
- 4 other buoy number (e.g. Argos or national buoy number)
- 5 Coastal-Marine Automated Network (C-MAN) ID (US NDBC operated)
- 6 station name or number
- 7 oceanographic platform/cruise number
- 8 fishing vessel psuedo-ID
- 9 national ship number
- 10 composite information from early ship data

Background: ID is extended to nine characters (versus e.g. seven in IMMT-4). In platform track checking, for example, consideration should be given to using a combination of II and ID, since identical IDs can sometimes have different II values and thus may represent different platforms. [Note: ICOADS processing normally left-justifies extant information stored within ID (with right blank-fill). GTS reports generally contain a radio call sign or WMO buoy identification number (<u>http://www.wmo.int/pages/prog/amp/mmop/wmo-number-rules.html</u>), but early IMM logbook reports sometimes contained IDs such as national ship numbers and "log" numbers. Documentation of the format of such numbers generally appears to be unavailable (but could potentially be sought from individual countries), thus PT=9 has generally been assigned only for earlier (pre-IMM) card decks for which the format of the information was known.]

16) C1 country code

The country that recruited a ship, which may differ from the country of immediate receipt (*C2*, field 63) and may also differ from the ship's registry. WMO transitioned from the older numeric code values 0-40 (Table D1) to the current 2-character ISO 3166 (http://www.iso.org/iso/country_codes.htm) alphabetic codes effective 1 Jan. 1998.

Background: Both the older numeric codes for historical data, and the alphabetic codes for more recent data, are stored in this field (since e.g. the old numeric codes include the USSR and other former country names). [Note: The older numeric codes were "according to numbers assigned by WMO" (see IMMT-1 documentation in WMO 1993a). Some deficiencies in NCDC's processing many years ago of early IMM receipts, involving missing country codes and card "overpunch" handling, are discussed in the LMR documentation.]

Table D1. WMO numeric country codes (now obsolete).

					/	-	-
<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>
0	Netherlands	10	Ireland	20	Sweden	30	Spain
1	Norway	11	Philippines	21	FRG	31	Thailand
2	US	12	Egypt	22	Iceland	32	Yugoslavia
3	UK	13	Canada	23	Israel	33	Poland
4	France	14	Belgium	24	Malaysia	34	Brazil
5	Denmark	15	South Africa	25	USSR	35	Singapore
6	Italy	16	Australia	26	Finland	36	Kenya
7	India	17	Japan	27	Rep. of Korea	37	Tanzania
8	Hong Kong	18	Pakistan	28	New Caledonia	38	Uganda
9	New Zealand	19	Argentina	29	Portugal	39	Mexico
			-		-	40	GDR

Regular section

17) *DI* wind direction indicator

18) *D* wind direction

DI gives the compass (and approximate precision) used for reporting the wind direction:

- 0 36-point compass
- 1 32-point compass
- 2 16 of 36-point compass
- 3 16 of 32-point compass
- 4 8-point compass
- 5 360-point compass
- 6 high resolution data (e.g. tenths of degrees)

D is the direction (true) from which wind is blowing (or will blow), stored in whole degrees (i.e. 360-point compass; range: 1-360°), or special codes:

361 – calm

362 – variable, or all directions

Table D2 lists the standard mappings used in ICOADS of contemporary (WMO Code 0877) and historical ship wind direction codes into degrees.

Background: IMMT-4 follows WMO Code 0877 (including 00 for calm, and 99 for variable). In FM 13, stations within 1° of the North Pole instead use Code 0878 (WMO 2009a). In designing D to store both high- and low-resolution directions, an unambiguous and numerically closed range (i.e. 1-362, rather than e.g. 0-360, 999=variable) was deemed advantageous for computational reasons (e.g. range checking).

Table D2. Translation of contemporary (DI=0; WMO Code 0877) and some historical (shaded) ship wind direction codes (DI=1-3 as represented in NCDC 1968) into degrees (blank indicates an undefined conversion). *Release 1*, supp. F provides the original rationale for the degree values shown in this table and further background information (including uncertainties associated with past usage of DI=4 in ICOADS).

_ · v	DI=4 in ICOADS).				
	ode 0877	0	1	<u>DI</u> 2	2	1
Code	Range	0	1	2	3	4 ?
01	5-14	10	11	05	22	? 2
02	15-24	20	23	25	23	? ?
03	25-34	30	34		45	?
04	35-44	40	45		45	?
05	45-54	50	56	45		? ? ?
06	55-64	60	68	~-	68	?
07	65-74	70	79	65		
08	75-84	80	90		90	?
09	85-94	90	101	90		
10	95-104	100	113		113	
11	105-114	110	124	115		
12	115-124	120	135		135	
13	125-134	130	146			
14	135-144	140	158	135	158	
15	145-154	150	169			
16	155-164	160	180	155	180	
17	165-174	170	191			
18	175-184	180	203	180	203	
19	185-194	190	214			
20	195-204	200	225	205	225	
21	205-214	210	236			
22	215-224	220	248		248	
23	225-234	230	259	225		
24	235-244	240	270		270	
25	245-254	250	281	245		
26	255-264	260	293		293	
27	265-274	270	304	270		
28	275-284	280	315		315	
29	285-294	290	326	295		
30	295-304	300	338		338	
31	305-314	310	349			
32	315-324	320	360	315	360	
33	325-334	330				
34	335-344	340		335		
35	345-354	350				
36	355-4	360		360		
00 (calm)		361	361	361	361	
99		362	362	362	362	
(variable)						

19) WI wind speed indicator

20) W wind speed

Wind speed is stored in tenths of a meter per second (to retain adequate precision for winds converted from knots, or high-resolution data). W shows the units in which and/or the method by which W was originally recorded (0, 1, 3, 4 follow WMO Code 1855):

0 – meter per second, estimated

- 1 meter per second, obtained from anemometer (measured)
- 2 estimated (original units unknown)
- 3 knot, estimated
- 4 knot, obtained from anemometer (measured)
- 5 Beaufort force (based on documentation)
- 6 estimated (original units unknown)/unknown method
- 7 measured (original units unknown)
- 8 high-resolution measurement (e.g. hundredths of a meter per second)

Background: No indication is given as to the incoming units and precision of W, e.g. whole knots. For reports derived from e.g. TDF-11 format (NCDC 1968), the meaning of WI=6 either is "estimated (units unknown)," or "both method and units unknown" (i.e. the indicator was missing). This unfortunate ambiguity derives from the dual meaning present in some original archive formats, including IMMPC (ref. Supp. B). [Note: In earlier ICOADS processing, WI=2 and WI=7 were used for reconversion of deck 555 from the original "SPOT" format; however, no missing value was available in the SPOT format, thus both those WI settings should be interpreted with caution.]

21) VI visibility indicator

22) VV visibility

VV (horizontal visibility at the surface in kilometers) according to WMO Code 4377 from which, in reporting visibility at sea, WMO (2009a; Reg. 12.2.1.3.2) states that the decile 90-99 shall be used (moreover Reg. 12.2.1.3.1: when the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV):

- 90 less than 0.05 kilometer
- 91 0.05
- 92 0.2
- 93 0.5
- 94 1
- 95 2
- 96 4
- 97 10
- 98 20
- 99 50 or more

VI shows whether *VV* was:

- 0 estimated (or unknown method of observation)
- 1 measured
- 2 fog present (obsolete)

Background: The "Cloud height and visibility measuring indicator" from IMMT-4 is separated into independent indicators in IMMA format, *HI* (see field 39) and *VI*. [Note: When *VI*=2, and *VV*=93, it meant that fog was present and visibility was not reported (NCDC 1968). This "fog present" combination of *VI*=2 with *VV*=93 appears to originate from "overpunch" procedures that took effect in the IMMPC format around 1966 (see Table B1) as translated into the TDF-11 format.]

23) WW present weather

24) W1 past weather

WMO Codes 4677 (Table D3) for WW, and 4561 for W1:

0 -Cloud covering 1/2 or less of the sky throughout the appropriate period

1 -Cloud covering more than 1/2 of the sky during part of the appropriate period and covering 1/2 or less during part of the period

2 – Cloud covering more than 1/2 of the sky throughout the appropriate period

- 3 Sandstorm, duststorm or blowing snow
- 4 Fog or ice fog or thick haze
- 5 Drizzle
- 6 Rain
- 7 Snow, or rain and snow mixed
- 8 Shower(s)
- 9 Thunderstorm(s) with or without precipitation

For use of weather data starting 1 Jan. 1982, also refer to IX (field 105).

Background: WMO Code 4561 also applies to *W2* (field 106). WMO Codes 4680 (W_aW_a) and 4531 (W_{a1}/W_{a2}) (not shown) are used instead for reporting present and past weather from an automatic weather station (see WMO 2009a). Those alternative Codes have the same numerical ranges as *WW* (00-99) and *W1/W2* (0-9) but different meanings.

Table D3. WMO Code 4677 for present weather (*WW*) (after WMO 2009a). Leading zero is omitted in IMMA. Large braces ("{" and "}") as appear in WMO (2009a) were not available in the preparation of this document, thus the code figure groups to which text characteristics given in the first column (e.g. "No meteors except photometeors") or last column apply, have been listed in square [brackets] associated with a small brace (e.g. "{[00-03]").

	Code			
	figure			
<i>WW</i> = 00		No precipitation at the station at the time of observation		
<i>WW</i> = 00	-19	No precipitation, fog, ice fog (except for 11 and 12), duststorm, sandstorm, drifting or blowing snow at the station ¹ at the time of observation or, except for 09 and 17, during the preceding hour		
	Code figure			
No	00	Cloud development not observed or not observable		
meteors except	01	Clouds generally dissolving or becoming less developed	[00-03]} Characteristic change of the state of sky during the	
photo- meteors	02	State of sky on the whole unchanged	past hour	
{[00-03]	03	Clouds generally forming or developing		
	04	Visibility reduced by smoke, e.g. veldt or forest fires, industrial smoke or volcanic ashes		
	05	Haze		
	06	Widespread dust in suspension in the air, not raised by wind at or near the station at the time of observation		
Haze, dust, sand or smoke	07	Dust or sand raised by wind at or near the station at the time of observation, but no well-developed dust whirl(s) or sand whirl(s), and no duststorm or sandstorm seen; or, in the case of ships, blowing array at the station		
{[04-09]	08	spray at the station Well-developed dust whirl(s) or sand whirl(s) seen at or near the station during the preceding hour or at the time of observation, but no duststorm or sandstorm		
	09	Duststorm or sandstorm within sight at the time of observation, or at the station during the preceding hour		
	10	Mist		
	11	Patches	[11-12]} shallow fog or ice fog	
	12	More or less continuous	at the station, whether on land	
			or sea, not deeper than about 2 metres on land or 10 metres at sea	
	13	Lightning visible, no thunder heard		

	Code		
	figure		
	14	Precipitation within sight, not reaching the ground or	
		the surface of the sea	
	15	Precipitation within sight, reaching the ground or the	
		surface of the sea, but distant, i.e. estimated to be	
		more than 5 km from the station	
	16	Precipitation within sight, reaching the ground or the	
		surface of the sea, near to, but not at the station	
	17	Thunderstorm, but no precipitation at the time of	
		observation	
	18	Squalls	[18-19]} at or within sight of
	19	Funnel cloud(s) ²	the station during the
			preceding hour or at the time
<i>WW</i> = 20	20	Precipitation, fog, ice fog or thunderstorm at the statio	of observation
<i>ww</i> – 20	-29	not at the time of observation	in during the preceding hour but
	20	Drizzle (not freezing) or snow grains	
	21	Rain (not freezing)	[00.04]]
	22	Snow	[20-24]} not falling as
	23	Rain and snow or ice pellets	shower(s)
	24	Freezing drizzle or freezing rain	
	25	Shower(s) of rain	
	26	Shower(s) of snow, or of rain and snow	
	27	Shower(s) of hail ³ , or of rain and hail ³	
	28	Fog or ice fog	
	29	Thunderstorm (with or without precipitation)	
<i>WW</i> = 30	-39	Duststorm, sandstorm, drifting or blowing snow	
	30		- has decreased during the
			preceding hour
	31	[20, 22]) Slight or moderate dustatorm or condutorm (– no appreciable change
		[30-32]} Slight or moderate duststorm or sandstorm {	during the preceding hour
	32		 has begun or has increased
			during the preceding hour
	33		 has decreased during the
			preceding hour
	34	[33-35]} Severe duststorm or sandstorm {	 no appreciable change
			during the preceding hour
	35		– has begun or has increased
			during the preceding hour
	36	Slight or moderate drifting snow	[36-37]} generally low (below
	37	Heavy drifting snow	eye level)
	38	Slight or moderate blowing snow	[38-39]} generally high (above
14/14/ - 40	39	Heavy blowing snow	eye level)
<i>WW</i> = 40		Fog or ice fog at the time of observation	
	40	Fog or ice fog at a distance at the time of	
		observation, but not at the station during the	
		preceding hour, the fog or ice fog extending to a level above that of the observer	
	41	Fog or ice fog in patches	
	41	Fog or ice fog, sky visible	[42-43]} has become thinner
	42	Fog or ice fog, sky visible	during the preceding hour
	43	Fog or ice fog, sky visible	[44-45]} no appreciable
	44 45	Fog or ice fog, sky visible	change during the preceding
		r og or ide idg, sky invisible	hour
	46	Fog or ice fog, sky visible	[46-47]} has begun or has
	47	Fog or ice fog, sky invisible	become thicker during the
			preceding hour
	48	Fog, depositing rime, sky visible	
	49	Fog, depositing rime, sky invisible	

	Code		
	figure		
<i>WW</i> = 50	-99	Precipitation at the station at the time of observation	
<i>WW</i> = 50	-59	Drizzle	
	50	Drizzle, not freezing, intermittent	[50-51]} slight at time of
	51	Drizzle, not freezing, continuous	observation
	52	Drizzle, not freezing, intermittent	[52-53]} moderate at time of
	53	Drizzle, not freezing, continuous	observation
	54	Drizzle, not freezing, intermittent	[54-55]} heavy (dense) at time
	55	Drizzle, not freezing, continuous	of observation
	56	Drizzle, freezing, slight	
	57	Drizzle, freezing, moderate or heavy (dense)	
	58	Drizzle and rain, slight	
	59	Drizzle and rain, moderate or heavy	
<i>WW</i> = 60	-69	Rain	
	60	Rain, not freezing, intermittent	[60-61]} slight at time of
	61	Rain, not freezing, continuous	observation
	62	Rain, not freezing, intermittent	[62-63]} moderate at time of
	63	Rain, not freezing, continuous	observation
	64	Rain, not freezing, intermittent	[64-65]} heavy (dense) at time
	65	Rain, not freezing, continuous	of observation
	66	Rain, freezing, slight	
	67	Rain, freezing, moderate or heavy	
	68	Rain or drizzle and snow, slight	
	69	Rain or drizzle and snow, moderate or heavy	
WW = 70	-79	Solid precipitation not in showers	
	70	Intermittent fall of snowflakes	[70-71]} slight at time of
	71	Continuous fall of snowflakes	observation
	72	Intermittent fall of snowflakes	[72-73]} moderate at time of
	73	Continuous fall of snowflakes	observation
	74	Intermittent fall of snowflakes	[74-75]} heavy (dense) at time
	75	Continuous fall of snowflakes	of observation
	76	Diamond dust (with or without fog)	
	77	Snow grains (with or without fog)	
	78	Isolated star-like snow crystals (with or without fog)	
	79	Ice pellets	
<i>WW</i> = 80		Showery precipitation, or precipitation with current or re	ecent thunderstorm
	80	Rain shower(s), slight	
	81	Rain shower(s), moderate or heavy	
	82	Rain shower(s), violent	
	83	Shower(s) of rain and snow mixed, slight	
	84	Shower(s) of rain and snow mixed, moderate or	
	95	heavy	
	85 86	Snow shower(s), slight	
	86	Snow shower(s), slight [87-88]} Shower(s) of snow pellets or small hail, with	- Slight
	87 88	or – without rain or rain and snow mixed {	– Slight – Heavy
	89	[89-90]} Shower(s) of hail ⁴ , with or without rain or rain	– Slight
	89 90	and snow mixed, not associated with thunder {	– Slight – Heavy
	90 91	Slight rain at time of observation	- Heavy
	91 92	Moderate or heavy rain at time of observation	
	92 93	Slight snow, or rain and snow mixed or hail ³ at time	[91-94]} Thunderstorm during
	90	of observation	the preceding hour but not at
	94	Moderate or heavy snow, or rain and snow mixed or	time of observation
		hail ^c at time of observation	
	95	Thunderstorm, slight or moderate, without hail ³ ,	[95-99]} Thunderstorm at time
		but with rain and/or snow at time of observation	of observation
	96	Thunderstorm, slight or moderate, with hail ³ at time	
		of observation	

Code figure	
97	Thunderstorm, heavy, without hail ³ , but with rain and/or snow at time of observation
98	Thunderstorm combined with duststorm or sandstorm at time of observation
99	Thunderstorm, heavy, with hail ³ at time of observation

1. The expression "at the station" refers to a land station or a ship.

2. Tornado cloud or water-spout.

3. Hail, small hail, snow pellets. French: grêle, grésil ou neige roulée.

4. French: grêle.

25) SLP sea level pressure

26) A barometric tendency

27) PPP amount of pressure tendency

SLP and *PPP* (amount of pressure tendency at station level during the three hours preceding the time of observation) in tenths of hPa (i.e. millibars), and A according to WMO Code 0200 (Table D4).

Background: IMMT-4 contains a 4-character (PPPP) representation of *SLP* in (dropping the leading digit). WMO (2009a) Reg. 12.1.3.7, Note (3) describes how for auxiliary ships *SLP* (similarly to *AT*, as discussed below) still may be reported to whole hPA (using the solidus "/" for the tenths position, which was probably generally set to zero in translated GTS data, with a resulting loss of precision information).

Table D4. WMO Code 0200 for characteristic of pressure tendency during the three hours preceding the time of observation (A) (after WMO 2009a).

Code		
figure		
0	Increasing, then decreasing; atmospheric pressure the same	
	or higher than three hours ago	
1	Increasing, then steady; or increasing, then increasing more	
	slowly	[1-3]} Atmospheric pressure now
2	Increasing (steadily or unsteadily) ¹	higher than three hours ago
3	Decreasing or steady, then increasing; or increasing, then	nigher than three hours ago
	increasing more rapidly	
4	Steady; atmospheric pressure the same as three hours ago ¹	
5	Decreasing, then increasing; atmospheric pressure the same	
	or lower than three hours ago	
6	Decreasing, then steady; or decreasing, then decreasing	
	more slowly	[6 9]) Atmospheria prossura pow
7	Decreasing (steadily or unsteadily) ¹	[6-8]} Atmospheric pressure now lower than three hours ago
8	Steady or increasing, then decreasing; or decreasing, then	lower than three hours ago
	decreasing more rapidly	

* For reports from automatic stations, see Reg. 12.2.3.5.3.

28) <i>IT</i> indicator for temperatures
--

- 29) AT air temperature (i.e. dry bulb)
- 30) *WBTI WBT* indicator
- 31) *WBT* wet-bulb temperature
- 32) DPTI DPT indicator
- 33) DPT dew-point temperature
- 34) SI SST method indicator

35) SST sea surface temperature

Temperatures are stored in tenths of a degree Celsius. *IT* provides information about the precision and/or units that the temperature elements were translated from:

- 0 tenths °C
- 1 half °C
- 2 whole °C
- 3 whole or tenths °C (mixed precision among temperature fields)
- 4 tenths °F
- 5 half °F
- 6 whole °F
- 7 whole or tenths °F (mixed precision among temperature fields)
- 8 high resolution data (e.g. hundredths °C)
- 9 other

Background: For *IT*, 0-2 match i_T =3-5 in IMMT-4; the full configuration matches predecessor field *T1* in LMR. Early historical temperatures may have also been reported in degrees Réaumur, mixed units, etc.; additional fields may be desirable in the historical attm to record such details. WMO (2009a) Reg. 12.1.3.7, Note (3) describes how for auxiliary ships *AT* (similarly to *SLP*, as discussed above) still may be reported to whole degrees (using the solidus "/" for the tenths position, which was probably generally set to zero in translated GTS data, with a resulting loss of precision information). Only starting in 1982 could *DPT* be reported to tenths in the SHIP code, and only starting 2 Nov. 1994 did it become possible to report *WBT* (to tenths) in FM 13.

WBTI and *DPTI* indicate which of *WBT* or *DPT* was measured or computed, and ice bulb conditions:

- 0 measured
- 1 computed
- 2 iced measured
- 3 iced computed

Background: *WBTI* and *DPTI* are derived from sign positions s_w and s_t in IMMT-4. [Note: For data originally translated into LMR from IMMT formats, the predecessor LMR field *T2* preserved only a subset of information derived from s_w and s_t , coupled with whether *DPT* was computed during ICOADS processing. Future work should seek to recover more complete information for data that were translated to IMMA from LMR, and consider new configurations to separately document ICOADS processing. WMO (2009a) Reg. 12.2.3.3.1 specifies when (e.g. owing to instrument failure) relative humidity (RH) is available and may be reported in FM 13 instead of *DPT* in an alternative group 29UUU. Thus far such RH data have generally not been recovered into ICOADS).]

- SI shows the method by which SST was taken:
 - 0 bucket
 - 1 condenser inlet (intake)
 - 2 trailing thermistor
 - 3 hull contact sensor
 - 4 through hull sensor
 - 5 radiation thermometer
 - 6 bait tanks thermometer
 - 7 others
 - 9 unknown or non-bucket
 - 10 "implied" bucket [note: applicable to early ICOADS data]
 - 11 reversing thermometer or mechanical sensor

12 - electronic sensor

Background: 0-7 follow the IMMT-4 code. Except for omitting SI=8 ("unknown"), this is a direct mapping from the LMR configuration. SI values should be used with extreme caution in earlier data (see discussion of "bucket indicators" in sec. 4 of *Release 1*). [Note: In translation from LMR, SI=8 was made missing (SI=8 indicated that no information was available; it resulted from a conversion error applicable only to decks 705-707). For data translated from IMM formats effective since 1982, SI=7 refers to "other than 0-6," because the only other extant values were 0-6. For FM 13 data reported since 2 Nov. 1994 (when SI information first became available on GTS), in contrast, SI=7 refers to "other than 0-1 or 3," because the only other extant values were equivalent to 0-1 or 3. SI=9 arose because a distinct missing value was not available in some earlier IMM and archive formats, e.g. in NCDC (1968) a blank in the SST indicator field for deck 128 meant "determined by other than bucket method," but blank also generally signified a missing field in that format.]

36) N total cloud amount (cover)

37) NH lower cloud amount

For N, codes 0 to 9 (WMO Code 2700) show the total fraction of the celestial dome covered by clouds (irrespective of their genus). For NH (also WMO Code 2700) they show the amount of all the low (CL) cloud present or, if no CL cloud is present, the amount of all the middle (CM) cloud present:

- 0 clear
- 1 1 okta or less, but not zero
- 2-6 2-6 oktas
- 7 7 oktas or more, but not 8 oktas
- 8 8 oktas
- 9 sky obscured by fog and/or other meteorological phenomena

Background: In WMO 2009a (WMO Code 2700), *N* is termed "total cloud cover." This description adopts the current WMO Code 2700 definition of code 9, which in LMR was defined as "sky obscured or cloud amount cannot be estimated" (as in Met Office 1948). The solidus ("/") is defined as a further possibility in WMO Code 2700 as "Cloud cover is indiscernible for reasons other than fog or other meteorological phenomena, or observation is not made," which should have been translated into missing data in IMMA. [Note: Historically "/" was omitted e.g. from Met Office 1948 and NCDC 1968, and thus also not included in *Release 1* or current LMR configurations for *N* and *NH*. In contrast *CL*, *H*, *CM*, and *CH* have always had an ICOADS configuration ("A" in IMMA) corresponding to "/" separate from missing data (see also background notes following *CH*, field 42).]

38) CL low cloud type

Codes 0 to 10 show characteristics observed of clouds of the genera Stratocumulus, Stratus, Cumulus, and Cumulonimbus (WMO Code 0513; see also background notes following *CH*, field 42).

39) HI cloud height indicator

HI shows if cloud height H was:

- 0 estimated
- 1 measured

Background: The "Cloud height and visibility measuring indicator" from IMMT-4 is separated into independent indicators in IMMA format, *HI* and *VI* (see field 21).

40) H cloud height

Codes 0 to 9 and "A" (following WMO Code 1600) show the height above surface of the base of the lowest cloud seen (such that a height exactly equal to one of the values at

the ends of the ranges shall be coded in the higher range, e.g. a height of 600 m shall be reported by code 5):

- 0 0 to 50 m
- 1 50 to 100 m
- 2 100 to 200 m
- 3 200 to 300 m
- 4 300 to 600 m
- 5 600 to 1000 m
- 6 1000 to 1500 m
- 7 1500 to 2000 m
- 8 2000 to 2500 m
- 9 2500 m or more, or no clouds

"A" – height of base of cloud not known or base of clouds at a level lower and tops at a level higher than that of the station

Background: Further notes regarding WMO Code 1600 (WMO 2009a) concern *H* data reported from automatic stations.

41) CM middle cloud type

Codes 0 to 10 show characteristics observed of clouds of the genera Altocumulus, Altostratus, and Nimbostratus (WMO Code 0515).

42) CH high cloud type

Codes 0 to 10 show characteristics observed of clouds of the genera Cirrus, Cirrocumulus and Cirrostratus (WMO Code 0509).

Background: Configurations for *CL*, *H*, *CM*, and *CH* are as in IMMT-4, except for use of "A" (10 in base36) in place of "/" (LMR used 10 in place of "/"). Analyses of cloud types may be impacted by a 1 Jan. 1982 GTS code change: When *N*=0, the types *CM*, *CH*, and *CL* were reported as missing (i.e. the FM 13 8NhC_LC_MC_H group was omitted), whereas previously these types may have been reported zero (see Hahn et al. 1992). However, to improve climatological data quality, starting 2 Nov. 1994 FM 13 was again modified so that all cloud observations at sea including no cloud observation shall be reported (see WMO 2009a, Reg. 12.2.7.1). [Note: For historical reasons (see background under *NH*, field 37), an inconsistency exists in IMMA in how solidus ("/") is translated for *N* and *NH* (i.e. to missing data) versus for *CL*, *H*, *CM*, and *CH* (i.e. to "A"). A related complication (i.e. in terms of preserving information about whether data were explicitly reported as "/" versus omitted from transmission) is that group Nddff in FM 13 is mandatory, whereas 8NhC_LC_MC_H can be omitted (Reg. 12.2.7.1).]

43) WD wave direction

Starting in 1968, *WD* was no longer reported in the SHIP code. Codes 00 to 36 (note: leading zero is omitted in IMMA) show the direction (if any) from which (wind) waves come, in tens of degrees (following WMO Code 0877; ref. Code and Range columns in Table D2). Codes 37 and 38 show:

37 – waves confused, direction indeterminate ($WH \le 4.75$ m)

38 - waves confused, direction indeterminate (*WH* > 4.75 m; or irrespective of wave height, corresponding to 99 in WMO Code 0877)

44) WP wave period

Period of wind waves, in seconds. Starting in 1968, *WP* was reported in seconds; prior to 1968 the period was reported as a code, which was converted into whole seconds following Table D5, with *WX* (field 61) set accordingly.

45) WH wave height

Height of wind waves, in units of 0.5 m (i.e. 1=0.5 m, 2=1 m, etc.).

Background: Historically, the (wind) wave and swell codes have been subject to complex changes. Prior to 1949 both sets of fields were apparently reported descriptively in the SHIP code, and thus are expected to be missing (and the swell fields are expected to be missing prior to 1 July 1963, as discussed below). Codes 37-38 arise from earlier historical codes (see Met Office 1948). Starting in 1968, *WD* was no longer reported and *WP* was reported in seconds. [Note: *WP*=99, indicating a confused sea, is not presently defined in IMMA. Future work should seek to recover this information from original formats, and consider an expanded IMMA configuration.]

46) SD swell direction

47) SP swell period

48) SH swell height

Configurations similar to the corresponding wave fields *WD*, *WP*, and *WH*. Prior to 1968 (1982), *SP* was reported as a code, which was converted into whole seconds per Table D5a (Table D5b), with *SX* (field 62) set accordingly.

Background: Beginning 1 July 1963 both sea (i.e. wind wave) and swell were reported. Prior to that date only the higher of sea and swell was reported. Starting in 1982, *SP* was reported in seconds.

Table D5a. Conversion for WP always, and for SP prior to 1968.

Seconds	Code	Interval
5	2	5 seconds or less
7	3	6-7 seconds
9	4	8-9 seconds
11	5	10-11 seconds
13	6	12-13 seconds
15	7	14-15 seconds
17	8	16-17 seconds
19	9	18-19 seconds
21	0	20-21 seconds
22	1	over 21 seconds
0	_	calm or period not determined

Table D5b. Conversion for SP beginning 1 January 1968.

Seconds	Code	Interval
10	0	10 seconds
11	1	11 seconds
12	2	12 seconds
13	3	13 seconds
14	4	14 seconds or more
5	5	5 seconds or less
6	6	6 seconds
7	7	7 seconds
8	8	8 seconds
9	9	9 seconds
0	_	calm or period not determined

ICOADS attm (C1)

49) <i>ATTI</i>	attm ID
50) ATTL	attm length
(See fields	197-198.)

Box elements

51) BSI box system indicator

52) *B10* 10° box number

53) *B1* 1° box number

10° and 1° box numbers (see *Release 1*, supp. G) are available e.g. for use in sorting operations. The box system indicator is currently unused.

Background: *BSI* provides flexibility in case other box requirements arise (i.e. future extant values of *BSI* could indicate different contents in *B10* and *B1*). *Release 1*, supp. G also describes the obsolete Marsden Square (MSQ) system.

Processing elements

54) DCK deck

Number of the deck from which the report came (Table D6a), with Tables D6b and D6c providing additional information about selected *DCK* ranges. "Deck" originally referred to a punched card deck, but is now used as the primary field to track ICOADS data collections. Each deck may contain a single Source ID (*SID*) or a mixture of *SIDs* (see field 55 for additional information about the relationship between these two fields, and with the format of supplemental data).

Table D6a. Deck assignments (adapted in part from Table All in Woodruff et al. 2010). For each deck number, the description, starting and ending years, and number of reports (in thousands) after final R2.5 processing (1662-2007), are listed (blanks in the last three columns indicate that no data were input and/or output¹). Decks entirely new to (or replaced in) R2.5, are numbered in **bold** (except within range 201-255). ICOADS also offers preliminary data (presently based exclusively on decks 792-795) extending beyond 2007, but not reflected in the last three columns.

Deck	Description	Start	End	Rpts K
110	US Navy Marine	1945	1951	633
116	US Merchant Marine	1945	1963	6 866
117	US Navy Hourlies	1952	1964	11
118	Japanese Ships No. 1 (Kobe Collection Data keyed in 1961)	1930	1953	1 727
119	Japanese Ships No. 2 (Kobe Collection Data keyed in 1961)	1951	1961	904
128	International Marine (US- or foreign-keyed ship data)	1950	1978	14 537
143	Pacific Marine Environmental Laboratory (PMEL) Buoys	1976	1977	13
144	TAO/TRITON and PIRATA Buoys (from PMEL & JAMSTEC) ²	1985	2004	7 192
145	PMEL (Daily) Equatorial Moorings and Island Stations ²	1979	1991	17
150	Pacific (US Responsibility) HSST Netherlands Receipts	1939	1961	85
151	Pacific (US Responsibility) HSST German Receipts	1862	1960	206
152	Pacific (US Responsibility) HSST UK Receipts	1855	1961	15
155	Indian (Netherlands Responsibility) HSST	1861	1960	1 068
156	Atlantic (German Responsibility) HSST	1852	1961	5 564
184	Great Britain Marine (194 extension)	1953	1961	344

Deck Description Start End Rpts K. 185 USSR Marine IGY 1957 1956 1111 186 USSR loc Stations 1950 1970 20 187 Japanese Whaling Fleet 1946 1956 10 188 Norwegian Antarctic Whaling Factory Ships 1932 1932 232 189 Netherlands Marine 1939 6 276 194 Great Brittain Marine 1856 1955 457 195 US Navy Ships Logs 1941 1944 1944 1954 143 197 Danish (and Other) Marine (Polar) 18471 1956 23 201-255 ³ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1944 1877 500 Guff Offshore Weather Observing Network (GOWON) (plat data) 1956 1970 1148 700 UK Met. Office (VOSClim GTS BUFR Data 2003 2007 10 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1761 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
186 USSR loc Stations 1950 1970 20 187 Japanese Whaling Fleet 1946 1956 10 188 Norwegian Antarctic Whaling Factory Ships 1932 123 1939 22 189 Netherlands Marine 1950 232 192 Deutsche Seewarte Marine 1855 1939 5 544 193 Netherlands Marine 1866 1955 447 194 Great Britain Marine 1866 1955 447 195 US Navy Ships Logs 1941 1946 1831 201-255 ³ UK Met. Office (MeO) Main Marine Data Bank (MDB) 1854 1945 1877 500 Guff Offshore Weather Observing Network (GOWON) (plat data) 1854 1946 1873 515 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 148 704 US Marine Meteorological Journals Collection 1784 1844 1761	Deck	Description	Start	End	Rpts K
187 Japanese Whaling Fleet 1946 1956 10 188 Norwegian Antarctic Whaling Factory Ships 1932 1939 2 189 Netherlands Marine 1930 1959 232 192 Deutsche Seewarte Marine 1855 1939 5 944 193 Netherlands Marine 1860 1955 457 194 Great Britain Marine 1865 1955 447 195 US Navy Ships Logs 1941 1946 598 196 Deutsche Seewarte Marine (192 extension) 1874 1945 187 201-255 ³ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; 1966 1973 2 213 500 Gulf Oftshore Woather Observing Network (GOWON) (plat data) 1970 1975 17 666 Tuna Boats 1970 1975 17 704 UK Met. Office OCSClim GTS BUFR Data 2003 2007 180 703	185	USSR Marine IGY	1957	1958	111
188 Norwegian Antarctic Whaling Factory Ships 1932 1939 1330 1939 1939 1938 6 276 194 Great Britain Marine 1940 1941 1946 15212 281 US Navy Jonthy Aerological Record (MAR) 1926 1945 187 500 Gulf Offshore Weather Observing Network (GOWON) (plat data) 1970 1975 17 17 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 107 1 24 1 346 <t< td=""><td>186</td><td>USSR Ice Stations</td><td>1950</td><td>1970</td><td>20</td></t<>	186	USSR Ice Stations	1950	1970	20
189 Netherlands Marine 1939 1959 232 192 Deutsche Seewarte Marine 1855 1939 5 944 193 Netherlands Marine 1856 1955 457 194 Great Britain Marine 1856 1955 457 195 US Navy Ships Logs 1941 1946 588 196 Deutsche Seewarte Marine (192 extension) 1949 1954 143 197 Danish (and Other) Marine (Polar) 1871 1956 23 201-255 ³ UK Met Office (MeIQ) Main Marine Data Bank (MDB) 1926 1945 187 281 US Navy Monthy Aerological Record (MAR) 1926 1945 187 500 Gulf Offshore Weather Observing Network (GOWON) (plat data) 1970 1975 17 666 Tuna Boats 1970 1975 17 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 703 US Marine Meteorological Journals Collection (187-84) 1878 1889 1761 70	187	Japanese Whaling Fleet	1946	1956	10
192 Deutsche Seewarte Marine 1855 1939 5 944 193 Netherlands Marine 1860 1958 6 276 194 Great Britaln Marine 1865 1955 457 195 US Navy Ships Logs 1941 1946 598 196 Deutsche Seewarte Marine (192 extension) 1949 1954 143 197 Danish (and Other) Marine (Polar) 1871 1956 23 201-2553 UK Met. Office (MeO) Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOS Cline GTS BUFR Data 2003 2007 10 704 US Mary Fleet Num. Met. and Collection (1878-94) 1878 1889 1 761 704 US Mary Elevicolicion 1744 1863 1 346 <	188	Norwegian Antarctic Whaling Factory Ships	1932	1939	2
193 Netherlands Marine 1800 1938 6 276 194 Great Birtain Marine 1856 1955 457 195 US Navy Ships Logs 1941 1946 598 196 Deutsche Seewarte Marine (192 extension) 1949 1954 143 197 Danish (and Other) Marine (Polar) 1871 1956 23 201-255 ⁵ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15212 281 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Montery) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1975 174 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1784 1863 1346 702 Norwegian Logbook Collection 1874 1761 1944 2062 703 US Lightship Collection (1912-46) (500 series) 1910 1944	189	Netherlands Marine	1939	1959	232
194 Great Britain Marine 1856 1955 457 195 US Navy Ships Logs 1941 1946 598 196 Deutsche Seewarte Marine (Polar) 1871 1956 23 201-255 ³ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Monthly Aerological Record (MAR) 1926 1945 1877 500 Guif Offshore Weather Observing Network (GOWON) (plat data) Wonterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1987 148 700 UK Met. Office VOSCIIm GTS BUFR Data 2003 2007 10 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 2655 714 Grenan D	192	Deutsche Seewarte Marine	1855	1939	5 944
195 US Navy Ships Logs 1941 1946 598 196 Deutsche Seewarte Marine (192 extension) 1949 1954 143 197 Danish (and Other) Marine (Polar) 1871 1956 23 201-2553 UK Met. Office (Me(O) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 100 701 US Maury Collection 1867 1889 201 703 US Lightship Collection 1867 1889 101 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 704 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2062 707 US Merchant Marine Collection (1912-46) (700 series)	193	Netherlands Marine	1800	1938	6 276
196 Deutsche Seewarte Marine (192 extension) 1949 1954 143 197 Danish (and Other) Marine (Polar) 1871 1956 23 201-255 ³ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Monthly Aerological Record (MAR) 1926 1945 187 500 Gulf Offshore Weather Observing Network (GOWON) (plat data) 1976 17 555 Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1986 1 346 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Marine Meteorological Journals Collection (1878-94) 1878 1884 1 761 703 US Ieghtship Collection (1912-46) (600 series) 1910 1944 2 662 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 German Deep Driffler Data (via ISDM; originally fr	194	Great Britain Marine	1856	1955	457
197 Danish (and Other) Marine (Polar) 1871 1956 23 201-255 ⁵ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Monthly Aerological Record (MAR) 1926 1945 187 500 Guif Offshore Weather Observing Network (GOWON) (plat data) 1970 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1148 700 UK Met. Office VOSCIm GTS BUFR Data 2003 2007 10 701 US Mary Collection 1867 1889 201 703 US Lightship Collection 1867 1889 1761 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1761 705 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 052 704 US Merchant Marine Collection (1912-46) (700 series) 1917 1944 2 052 714 German Deep Drifter Data (via ISDM; or	195	US Navy Ships Logs	1941	1946	598
197 Danish (and Other) Marine (Polar) 1871 1956 23 201-255 ⁵ UK Met. Office (MetO) Main Marine Data Bank (MDB) 1854 1994 15 212 281 US Navy Monthly Aerological Record (MAR) 1926 1945 187 500 Guif Offshore Weather Observing Network (GOWON) (plat data) 1970 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1148 700 UK Met. Office VOSCIm GTS BUFR Data 2003 2007 10 701 US Mary Collection 1867 1889 201 703 US Lightship Collection 1867 1889 1761 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1761 705 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 052 704 US Merchant Marine Collection (1912-46) (700 series) 1917 1944 2 052 714 German Deep Drifter Data (via ISDM; or	196	Deutsche Seewarte Marine (192 extension)	1949	1954	143
281 US Navy Monthly Aerological Record (MAR) 1926 1945 187 500 Gulf Offshore Weather Observing Network (GOWON) (plat data) US Navy Fieet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSCIIm GTS BUFR Data 2003 2007 10 701 US Maury Collection 1784 1863 1 346 703 US Lightship Collection 1784 1863 1 346 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 2 052 714 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel)	197		1871	1956	23
281 US Navy Monthly Aerological Record (MAR) 1926 1945 187 500 Gulf Offshore Weather Observing Network (GOWON) (plat data) US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 677 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSCIIm GTS BUFR Data 2003 2007 10 701 US Maury Collection 1784 1863 1 346 702 Norwegian Logbook Collection 1878 1894 1 761 703 US Lightship Collection 1878 1894 1 761 704 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2062 707 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. 1876 1914 976 <td>201-255³</td> <td>UK Met. Office (MetO) Main Marine Data Bank (MDB)</td> <td>1854</td> <td>1994</td> <td>15 212</td>	201-255 ³	UK Met. Office (MetO) Main Marine Data Bank (MDB)	1854	1994	15 212
500 Gulf Offshore Weather Observing Network (GOWON) (plat data) 555 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1867 1889 201 703 US Lightship Collection 1867 1889 201 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 704 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly 1978 2007 57 274 MEDS) Buoys 1978 2007 57 274 1914 976 730 Climatological Database for the World'S Oceans (CLIWOC) <t< td=""><td>281</td><td></td><td>1926</td><td>1945</td><td>187</td></t<>	281		1926	1945	187
555 US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. 1966 1973 2 213 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1867 1889 201 703 US Lightship Collection 1867 1889 201 703 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (600 series) 1911 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976					
Monitery / Teleconi. 666 Tuna Boats 1970 1975 17 667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1 148 700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1867 1889 201 703 US Lightship Collection 1867 1889 201 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1944 2 062 704 US Merchant Marine Collection (1912-46) (700 series) 1913 1944 2 062 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914<			1066	1073	2 212
667 Inter-American Tropical Tuna Commission (IATTC) 1971 1997 1148 700 UK Met. Office VOSCIim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1867 1883 1346 702 Norwegian Logbook Collection 1867 1889 201 703 US Lightship Collection 1878 1894 1 761 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1944 2 052 704 US Merchant Marine Collection (1912-46) (700 series) 1978 2007 57 274 714 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1954 33 733 Russian S.O. Makarov Collection 1804 1891 3 733 Russia	555	Monterey) Telecom.	1900	1975	2213
700 UK Met. Office VOSClim GTS BUFR Data 2003 2007 10 701 US Maury Collection 1784 1863 1 346 702 Norwegian Logbook Collection 1867 1889 201 703 US Lightship Collection 1867 1889 201 704 US Maine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 733 Russian AARI North Pole (NP) Stations 1933 1924 12 73	666	Tuna Boats	1970	1975	17
701 US Maury Collection 1784 1863 1 346 702 Norwegian Logbook Collection 1867 1889 201 703 US Lightship Collection 1867 1889 201 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1946 1 014 705 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 731 Russian S.O. Makarov Collection 1804 1881 3 732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 734 Arctic Drift Stations 1933 1924 12	667	Inter-American Tropical Tuna Commission (IATTC)	1971	1997	1 148
702 Norwegian Logbook Collection 1867 1889 201 703 US Lightship Collection 1878 1894 1761 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1946 1014 706 US Merchant Marine Collection (1912-46) (700 series) 1910 1944 2062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian AARI North Pole (NP) Stations 1937 1991 98 733 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 734 Arctic Drift Stations 1937 1991	700	UK Met. Office VOSClim GTS BUFR Data	2003	2007	10
703 US Lightship Collection 704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1946 1014 706 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian AARI North Pole (NP) Stations 1937 1991 98 733 Russian Research Vessel (R/V) Digitization 1936 2000 1789 734 Arctic Drift Stations 1937 1991 98 56 743 Russian Research Vessel (R/V) Digitization 1936 2000 1789	701	US Maury Collection	1784	1863	1 346
704 US Marine Meteorological Journals Collection (1878-94) 1878 1894 1 761 705 US Merchant Marine Collection (1912-46) (500 series) 1910 1946 1 014 706 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian AARI North Pole (NP) Stations 1937 1991 98 733 Russian AARI North Pole (NP) Stations 1936 2000 1 789 736 Byrd Antarctic Expedition (keyed by Hollings Scholars) 1929 1934 1 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS	702	Norwegian Logbook Collection	1867	1889	201
705 US Merchant Marine Collection (1912-46) (500 series) 1910 1946 1 014 706 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian AARI North Pole (NP) Stations 1937 1991 98 733 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 734 Arctic Drift Stations 1893 1924 12 125 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998	703	US Lightship Collection			
706 US Merchant Marine Collection (1912-46) (600 series) 1910 1944 2 062 707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian Aarli North Pole (NP) Stations 1937 1991 98 733 Russian AResearch Vessel (R/V) Digitization 1936 2000 1789 735 Russian Research Vessel (R/V) Digitization 1936 2000 1789 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 749 First GARP Global Experiment (FGGE) Level IIb 1978 1940 <td< td=""><td>704</td><td>US Marine Meteorological Journals Collection (1878-94)</td><td>1878</td><td>1894</td><td>1 761</td></td<>	704	US Marine Meteorological Journals Collection (1878-94)	1878	1894	1 761
707 US Merchant Marine Collection (1912-46) (700 series) 1913 1941 425 714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian AARI North Pole (NP) Stations 1937 1991 98 733 Russian Research Vessel (R/V) Digitization 1936 2000 1789 734 Arctic Drift Stations 1932 1929 1934 1 740 Research Vessel (R/V) Digitization 1936 2000 1789 743 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 744 Research Vessel (R/V) Diata (uality-Evaluated by FSU/COAPS 1990 1988 200	705	US Merchant Marine Collection (1912-46) (500 series)	1910	1946	1 014
714 Canadian Integrated Science Data Mgmt. (ISDM; formerly MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian AARI North Pole (NP) Stations 1937 1991 98 734 Arctic Drift Stations 1893 1924 12 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998 56 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 762 Japanese Wohaling Ship Data (CDMP/MIT digitization) 1946 1984 200 761 Japanese Kobe Collection Data (keyed after decks 118-119)	706	US Merchant Marine Collection (1912-46) (600 series)	1910	1944	2 062
714 MEDS) Buoys 1978 2007 57 274 715 German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel) 1980 1996 1 031 720 Deutscher Wetterdienst (DWD) Marine Met. Archive 1876 1914 976 730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian AARI North Pole (NP) Stations 1937 1991 98 734 Arctic Drift Stations 1893 1924 12 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 736 Byrd Antarctic Expedition (keyed by Hollings Scholars) 1929 1934 1 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998 56 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 762 Japanese Kobe Collection Data (keyed after decks 118-119) 1889 1940 3 135<	707	US Merchant Marine Collection (1912-46) (700 series)	1913	1941	425
Kiel)1980199019961031720Deutscher Wetterdienst (DWD) Marine Met. Archive18761914976730Climatological Database for the World's Oceans (CLIWOC)16621855261731Russian S.O. Makarov Collection180418913732Russian Marine Met. Data Set (MORMET) (rec'd at NCAR)188819957 873733Russian AARI North Pole (NP) Stations1937199198734Arctic Drift Stations1893192412735Russian Research Vessel (R/V) Digitization193620001 789736Byrd Antarctic Expedition (keyed by Hollings Scholars)192919341740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738791Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	714		1978	2007	57 274
730 Climatological Database for the World's Oceans (CLIWOC) 1662 1855 261 731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian AARI North Pole (NP) Stations 1937 1991 98 734 Arctic Drift Stations 1893 1924 12 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 736 Byrd Antarctic Expedition (keyed by Hollings Scholars) 1929 1934 1 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998 56 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 761 Japanese Kobe Collection Data (keyed after decks 118-119) 1889 1940 3 135 780 NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA) 1772 2005 7 738 791 Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships 1998 2007 5 889	715		1980	1996	1 031
731 Russian S.O. Makarov Collection 1804 1891 3 732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian AARI North Pole (NP) Stations 1937 1991 98 734 Arctic Drift Stations 1893 1924 12 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 736 Byrd Antarctic Expedition (keyed by Hollings Scholars) 1929 1934 1 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998 56 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 761 Japanese Whaling Ship Data (CDMP/MIT digitization) 1946 1984 20 762 Japanese Kobe Collection Data (keyed after decks 118-119) 1889 1940 3 135 780 NODC/OCL World Ocean Data Archeology and Rescue (GODAR) 1772 2005 7 738 791 US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data 1998 2007 5 889 793 NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code) <t< td=""><td>720</td><td>Deutscher Wetterdienst (DWD) Marine Met. Archive</td><td>1876</td><td>1914</td><td>976</td></t<>	720	Deutscher Wetterdienst (DWD) Marine Met. Archive	1876	1914	976
732 Russian Marine Met. Data Set (MORMET) (rec'd at NCAR) 1888 1995 7 873 733 Russian AARI North Pole (NP) Stations 1937 1991 98 734 Arctic Drift Stations 1893 1924 12 735 Russian Research Vessel (R/V) Digitization 1936 2000 1 789 736 Byrd Antarctic Expedition (keyed by Hollings Scholars) 1929 1934 1 740 Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS 1990 1998 56 749 First GARP Global Experiment (FGGE) Level IIb 1978 1979 6 761 Japanese Whaling Ship Data (CDMP/MIT digitization) 1946 1984 20 762 Japanese Kobe Collection Data (keyed after decks 118-119) 1889 1940 3 135 780 NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA) 1772 2005 7 738 792 US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data 1998 2007 5 889 793 NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" 1998 2007 10 545 794 NCEP BUFR GTS: Buoy Data (transmitted in FM	730	Climatological Database for the World's Oceans (CLIWOC)	1662	1855	261
733Russian AARI North Pole (NP) Stations1937199198734Arctic Drift Stations1893192412735Russian Research Vessel (R/V) Digitization193620001 789736Byrd Antarctic Expedition (keyed by Hollings Scholars)192919341740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY"199820071 950	731	Russian S.O. Makarov Collection	1804	1891	3
734Arctic Drift Stations1893192412735Russian Research Vessel (R/V) Digitization193620001 789736Byrd Antarctic Expedition (keyed by Hollings Scholars)192919341740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	732	Russian Marine Met. Data Set (MORMET) (rec'd at NCAR)	1888	1995	7 873
735Russian Research Vessel (R/V) Digitization193620001 789736Byrd Antarctic Expedition (keyed by Hollings Scholars)192919341740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	733	Russian AARI North Pole (NP) Stations	1937	1991	98
736Byrd Antarctic Expedition (keyed by Hollings Scholars)192919341740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	734	Arctic Drift Stations	1893	1924	12
740Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS1990199856749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	735	Russian Research Vessel (R/V) Digitization	1936	2000	1 789
749First GARP Global Experiment (FGGE) Level IIb197819796761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	736	Byrd Antarctic Expedition (keyed by Hollings Scholars)	1929	1934	1
761Japanese Whaling Ship Data (CDMP/MIT digitization)1946198420762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships177220075 889792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	740	Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS	1990	1998	56
762Japanese Kobe Collection Data (keyed after decks 118-119)188919403 135780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships177220057 738792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	749	First GARP Global Experiment (FGGE) Level IIb	1978	1979	6
780NODC/OCL World Ocean Database (WOD) (and formerly Atlas, WOA)177220057 738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	761	Japanese Whaling Ship Data (CDMP/MIT digitization)	1946	1984	20
WOA)177220037738781Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships199820075 889792US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data199820075 889793NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" code)1998200710 545794NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" code)199820071 950	762	Japanese Kobe Collection Data (keyed after decks 118-119)	1889	1940	3 135
761 Ships 792 US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data 1998 2007 5 889 793 NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" 1998 2007 10 545 794 NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" 1998 2007 1 950	780		1772	2005	7 738
792 US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data 1998 2007 5 889 793 NCEP BUFR GTS: Buoy Data (transmitted in FM 13 "SHIP" 1998 2007 10 545 794 NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" 1998 2007 1 950	781	Chinese/Global Ocean Data Archeology and Rescue (GODAR)			
793 code) 1998 2007 10 343 794 NCEP BUFR GTS: Buoy Data (transmitted in FM 18 "BUOY" 1998 2007 1 950 794 code) 1998 2007 1 950	792	US Natl. Cntrs. for Environ. Pred. (NCEP) BUFR GTS: Ship Data	1998	2007	5 889
rg4 code)	793		1998	2007	10 545
795 NCEP BUFR GTS: Coastal-Marine Automated Network (C-MAN 2005 2007 4 056	794		1998	2007	1 950
	795	NCEP BUFR GTS: Coastal-Marine Automated Network (C-MAN	2005	2007	4 056

Deck	Description	Start	End	Rpts K
	code) Data			
796	NCEP BUFR GTS: Miscellaneous (OSV, plat, and rig) Data			
797	NCEP BUFR GTS: CREX code			
849	First GARP Global Experiment (FGGE)	1978	1979	250
850	German FGGE	1978	1979	146
874	Shipboard Environmental (Data) Acquisition System (SEAS)	1991	2007	504
876-882 ⁴	US National Data Buoy Center (NDBC) Data	1972	1979	315
883 ⁴	US National Data Buoy Center (NDBC) Data	1980	2004	20 538
888	US Air Force Global Weather Central (GWC)	1973	1997	5 993
889	Autodin (US Dept. of Defense Automated Digital Network)	1972	1995	1 039
890	US National Met. Center (NMC, now NCEP) Data (obsolete)			
891	US National Oceanographic Data Center (NODC) Surface Data			
892	US Natl. Centers for Environmental Pred. (NCEP) Ship Data	1980	1997	9 209
893	NCEP Moored Buoy Data	1986	1997	2 225
894	NCEP Drifting Buoy Data			
895	NCEP Coastal-Marine Automated Network (C-MAN) Data			
896	NCEP Miscellaneous (OSV, plat, and rig) Data	1980	1997	575
897	Eltanin	1962	1963	1
898	Japanese	1954	1974	121
899	South African Whaling	1900	1955	64
900	Australian	1931	1979	386
901	FOSDIC Reconstructions (card images from 16mm film)	1868	1963	7
902	Great Britain Marine (184 extension)	1957	1961	99
926	International Maritime Meteorological (IMM) Data	1954	2007	25 372
927	International Marine (US- or foreign-keyed ship data) 5	1970	2007	11 138
928	Same as 927 including Ocean Station Vessels (OSV)	1970	1974	4
992	NCDC GTS: Ship Data			
993	NCDC GTS: Buoy Data (transmitted in FM 13 "SHIP" code)			
994	NCDC GTS: Buoy Data (transmitted in FM 18 "BUOY" code)			
995	NCDC GTS: Coastal-Marine Automated Network (C-MAN code) Data			
996	NCDC GTS: Miscellaneous (OSV, plat, and rig) Data			
997	NCDC GTS: CREX code			
999	US Air Force Environ. Technical Applications Center (ETAC)	1967	1969	37

1. Some of these decks (ref. LMR documentation) were used in ICOADS prior to R2.5; others have not been used. LMR documentation also defines for real-time data processing unofficial deck numbers 001-009, which are not used for ICOADS.

2. Deck 145 contains daily-averaged data, and up to the early 1990's TAO deck 144 contains average estimates for 2-8 hours depending on the buoy instrument package and power requirements. 3. See Table D6b.

4. See Table D6c.

5. A mixture of US- and foreign-keyed data exists in deck 927 prior to 1980; starting about 1980 deck 927 is believed to contain only US-keyed ships.

Table D6b. UK Met. Office (MetO) Main Marine Data Bank (MDB) deck assignments (equivalent to MDB "series" numbers). For each deck number, the description, starting and ending years, and number of reports (in thousands) after final R2.5 processing, are listed ("(n/a)" in the last column indicates output report count not yet available; or blanks in the last three columns indicate that no data were input and/or output). Assignments falling in the range 201-255 not listed below (217, 219-220, etc.) are not yet assigned. Approximate time periods are also given in the description column from earlier MDB or other external documentation.

		Ctort	End	Data K
Deck	Description	Start	End	Rpts K
201	All Ships (1930 code) (1850-1920)	1854	1956	(n/a)
202	All Ships (1921 code) (1921-29)	1915	1938	(n/a)
203	Selected Ships (1930 code) (1920-39)	1929	1961	(n/a)
204	British Navy (HM) Ships (1930 code) (1930-48)	1929	1949	(n/a)
205	Scottish Fishery Cruisers MARIDS (1930 code) (1946-56)	1945	1956	(n/a)
206	Ocean Weather Stations (OWS) (1930 code) (1947-49)	1947	1948	(n/a)
207	Selected Ships (1930 code) (1945-48)	1945	1953	(n/a)
208	Light Vessels (1949-56)			
209	Selected Ships (including some foreign ships) (1951-56)	1951	1956	(n/a)
210	OWS (including Dutch "J") (1950-56)	1950	1956	(n/a)
211	Scottish Fishery Cruisers MARIDS (1956-61)	1956	1961	(n/a)
212	Light Vessels (1956-61)			
213	Selected Ships (1956-61)	1953	1962	(n/a)
214	OWS (1956-61)	1956	1961	(n/a)
215	German Marine (1860-1938) ¹	1860	1940	(n/a)
216	UK Merchant Ship Logbooks (METFORMS; keyed in 1996) (1935-39)	1935	1939	(n/a)
218	US OWS (1953-)	1953	1963	(n/a)
221	MARIDS and Trawlers (1961-)	1962	1988	(n/a)
222	Light Vessels (1961-)			
223	Selected Ships (1961-81)	1962	1982	(n/a)
224	OWS (1961-81)	1976	1981	(n/a)
225	Norwegian Format (1953-)			
226	OWS (1949 code) (1949-52)	1949	1952	(n/a)
227	Selected Ships (1949-53)	1947	1954	(n/a)
229	British Navy (HM) Ships (1961-)	1953	1981	(n/a)
230	Int. Maritime Met. Punched Card (IMMPC) Data (1960-81)	1962	1971	(n/a)
233	Selected Ships (1982-)	1982	1994	(n/a)
234	OWS (1982-)	1982	1994	(n/a)
235	RIGG, PLAT, Automatic Weather-Observing System (AWS; buoy) (1982-)			
239	British Navy (HM) Ships (1982-)	1953	1993	(n/a)
241	MetO GTS Receipts (primarily SHIP code; from MDB format) ²			
242	MetO GTS Receipts (SHIP code; raw messages from MetDb) ³			
245	Royal Navy Ship's Logs (keyed by 2007) (1938-47)	1936	1955	1 423
246	Antarctic Expeditions: Print./Published (held at Met. Office)	1898	1940	35
247	Atmospheric Circ. Reconstructions over the Earth (ACRE) Data	1872	1876	16
254	Int. Maritime Met. (IMM) Data (foreign or unknown origin)	1860	1994	(n/a)
255	Undocumented TDF-11 Decks or MDB Series	1857	1994	(n/a)

1. Believed to be derived from the same original German punched cards as deck 192 (see Table D6a).

2. 1 Jan 1982-26 Jun 1998 (missing: Apr-Jun 82; Mar, Jun, Sep 85; Sep 88). Some non-SHIP (e.g. BUOY) data may also be included in earlier years.

3. 21 Dec 1996-23 Feb 1998.

Table D6c. Deck assignments for early US National Data Buoy Center (NDBC) data (decks 876-882), and the latest version from NCDC of NDBC data (deck 883). For each deck number, the description, starting and ending years, and number of reports (in thousands) after final R2.5 processing, are listed ("(n/a)" in the last column indicates output report count not yet available). Initially, separate deck numbers 876-880 were assigned to indicate hull design, etc.¹ At a later date, this convention was abandoned, such that decks 882 and 883 were used for all data.

Deck	Description	Start	End	Rpts K
876	NDBC Data (High Capability Buoy; HCB)	1972	1977	(n/a)
877	NDBC Data (Limited Capability Buoy; LCB)	1973	1976	(n/a)
878	NDBC Data (Prototype Environmental Buoy; PEB)	1974	1978	(n/a)
879	NDBC Data (5-meter Continental Shelf Buoys)	1974	1978	(n/a)
880	NDBC Data (10-meter Continental Shelf Buoys)	1976	1978	(n/a)
881	NDBC Data (Offshore Platforms)	1976	1977	(n/a)
882	NDBC Data	1978	1979	(n/a)
883	NDBC Data (latest version from NCDC)	1980	2004	20 538

1. Hull design information is based on informal NCDC documentation (NCDC 1972a and 1972b) and D. Gilhousen (NDBC) personal correspondence (13 Dec. 1995).

55) SID source ID

Number of the source ID from which the report came (Table D7). Each *SID* may contain a single deck or a mixture of decks, but each *SID* is generally constrained to a single input format. This helps to identify the format of data stored in the supplemental attachment. However, exceptions include UK Marine Data Bank (MDB) data, for which both *DCK* (201-255) and *SID* (90-93) may be required to determine the supplemental format.

Table D7. Source ID (*SID*) assignments (adapted in part from Table AIII in Woodruff et al. 2010). For each *SID* number, the description, starting and ending years, and number of reports (in thousands) after final R2.5 blending, are listed (blanks in the last three columns indicate that no data were input and/or output¹). *SIDs* entirely new to (or replaced in) R2.5, are numbered in **bold**. ICOADS also offers preliminary data (presently based exclusively on *SID* 103) extending beyond 2007, but not reflected in the last three columns.

SID	Description	Start	End	Rpts K
0	[reserved]			
1	Atlas	1800	1969	32 713
2	HSST Pacific	1855	1961	405
3	HSST Indian	1861	1960	1 068
4	HSST Atlantic	1852	1961	5 564
5	Old TDF-11 Supplement B	1854	1975	2 694
6	Old TDF-11 Supplement C	1855	1978	2 625
7	Monterey Telecommunications	1966	1969	661
8	Ocean Station Vessels (OSV)	1945	1973	822
9	OSV Supplement	1947	1973	57
10	MSQ 486 and 105 Omissions	1854	1968	172
11	US National Oceanographic Data Center (NODC) Surface			
12	US NODC Surface Supplement			
13	Eltanin	1962	1963	1
14	Japanese	1954	1974	121

SID	Description	Start	End	Rpts K
15	South African Whaling	1900	1955	64
16	Australian	1931	1970	192
17	International Maritime Meteorological (IMM) Data	1956	1979	224
18	'70s Decade	1970	1979	12 183
19	IMM '70s	1978	1979	<1
20	OSV Z ('70s)	1970	1974	1
21	Australian ('70s)	1971	1979	194
22 ²	NCDC: 1980-84 Annual Receipts	1982	1987	135
23	'70s Mislocated Data	1973	1979	2
24	Buoy Data	1972	1979	192
25-28 ³	NCDC: 1980-85 Annual Receipts	1962	1985	1 534
29	NCDC: US Nat. Met. Center (NMC, now NCEP) Reconversion (1980-92)	1980	1992	8 201
30	NCDC: 1980-84 Period of Record	1965	1984	4 192
31	Corrected Canadian Data			
32-33 ³	NCDC: Annual Receipts (and duplicates; starting in 1986)	1974	1997	4 440
34-45 ³	NCDC: 1986-97 Receipts (delayed)	1969	1996	1 251
46-47 ³	International Maritime Met. (IMM) Tape Archive (1982-)	1969	1995	7 117
48	NODC/OCL 1994 World Ocean Atlas (WOA94; Mar. 93 NODC archive data)			
49	NODC/OCL 1994 World Ocean Atlas (WOA94; non-NODC archive)			
50	US National Data Buoy Center (NDBC) Data	1980	1997	12 770
51-52 ³	Russian AARI North Pole (NP) Stations	1937	1991	98
53	First GARP Global Experiment (FGGE) Level IIb: Surface Marine Data	1978	1979	6
54	FGGE Level IIb: Oceanographic Data			
55	FGGE Level IIb: Drifting Buoy Data			
56	Russian S.O. Makarov Collection	1804	1891	3
57	Russian Marine Meteorological Data Set (MORMET) (rec'd at NCAR)	1888	1993	7 873
58	French International Maritime Met. (IMM) Uncorrected (1954-88)			
59	UK IMM Corrections (1982-89)	1982	1989	1 552
60	French International Maritime Met. (IMM) Corrected	1954	1988	159
61	Canadian Integrated Science Data Management (ISDM; formerly MEDS) Buoys			
62	ISDM (formerly MEDS) World Ocean Circulation Experiment (WOCE) Buoys			
63	Canadian ISDM (formerly MEDS) Buoys (July 2005 archive extended Dec. 2008)	1978	2007	57 274
64	Russian Research Vessel (R/V) Digitization: Marine Surface	1936	2000	1 153
65	Russian Research Vessel (R/V) Digitization: Marine Actinometric	1947	2000	637
66	Pacific Marine Environmental Lab. (PMEL) TOGA/TAO Buoys	1985	1992	236
67	PMEL (Daily) Equatorial Moorings and Island Stations	1979	1991	17
68	Arctic Drift Stations	1893	1924	12
69	US Maury Collection	1784	1863	1 346
70	Inter-American Tropical Tuna Comm. (IATTC) Porpoise Obs. Logs	1979	1997	736
71	IATTC Fishing Logs	1971	1997	413
72	IMM Tape Archive from WMO Global Collecting Centre (GCC) (1994 format)	1982	1997	3 808
73	NCDC Marine Obs. Processing System (MOPS): Pre-MOPS (TD- 9973)			
74	NCDC MOPS: Duplicate File (TD-9974)			
75	NCDC MOPS: Original Observations (TD-9980)			

SID	Description	Start	End	Rpts I
76	NCDC MOPS: Supplementary or Correction Data			
77	NCDC: US National Cntrs. for Environ. Pred. (NCEP) Reconversion	1994	1997	2 609
	(1994-97)	1001	1007	2 000
78	NCDC: US-keyed Logbook Data Reconversion (TD-9972; keyed during 1996-97)	1987	1997	307
79	US Air Force Global Weather Central (GWC): DATSAV2 format	1980	1997	1 46
	US Navy FNMOC Monterey Telecom: NCAR: Kunia (OPCON)	1000	1007	1 10
80	format			
81	US Navy FNMOC Monterey Telecom: NCAR: NEDN format			
82	US Navy FNMOC Monterey Telecom: NCAR: Surface Ship (SPOT)			
	format			
83	US Navy FNMOC Monterey Telecom: NCDC: Surface Ship (SPOT) format (TD-9769)			
84	US Merchant Marine Collection (1912-46): Full QC	1910	1944	1 92
85	US Merchant Marine Collection (1912-46): Partial QC	1910	1946	1 24
86	Pacific Marine Environ. Lab. (PMEL) TOGA/TAO Buoys: RAM Data			
	Pacific Marine Environ. Lab. (PMEL) TOGA/TAO Buoys: SPOT			
87	Data			
88	NODC/OCL 1998 World Ocean Database (WOD98; Mar. 94 NODC			
	archive data) NODC/OCL 1998 World Ocean Database (WOD98; non-NODC			
89	archive)			
00	UK Met. Ofc. (MetO) Main Marine Data Bank (MDB): Flatfile 1 (no	1056	1004	0.07
90	cardimage)	1856	1994	9 27
91	MetO MDB: Flatfile 1A (Flatfile plus cardimage data)	1854	1979	5 41
92	MetO MDB: Flatfile 1B (no Flatfile match; data derived from	1855	1978	6
	cardimage) MetO Historical Metforms (1935-39): Flatfile 1C (data from			
93	cardimage)	1935	1939	45
94	MetO GTS Receipts (primarily SHIP code; from MDB format)			
95	Japanese Kobe Collection Data (IMMT format; 2003 Edition)	1889	1940	3 13
96	Norwegian Logbook Collection	1867	1889	20
97	Japanese Kobe Collection Data (IMMT format; 1998 Edition)			
98	US Merchant Marine Collection (1912-46): Full QC (CLICOM	1914	1944	32
90	system)	1914	1944	52
99	Japanese Kobe Collection Data (IMMT format; 2001 Edition)			
100	NCEP BUFR GTS: Operational Tanks: Converted from Original	1998	1999	2 19
101	Message NCEP BUFR GTS: Operational Tanks: Converted from BUFR			
	NCEP BUFR GTS: Dumped Data: Converted from Original			
102	Message			
103	NCEP BUFR GTS: Dumped Data: Converted from BUFR	1999	2007	20 24
104-	[reserved]			
109				
110	UK Met. Office VOSClim GTS BUFR Data	2003	2007	1
111	Shipboard Environmental (Data) Acquisition System (SEAS)	1991	2007	43
112	IMM Tape Archive from WMO GCC (IMMT-2 or IMMT-3 format)	1982	2007	7 99
113	International Marine (US-keyed ship data)	1992	2007	53
114	NCDC GTS			
115	Japanese Whaling Ship Data (CDMP digitization)	1946	1984	2
116	Japanese Whaling Ship Data (MIT digitization)	1951	1976	<
117	PMEL TAO/TRITON and PIRATA Research Archive Hourly	1990	2001	3 39
	Average Data PMEL TAO/TRITON and PIRATA Research Archive 10-Minute		.	_
118	Average Data	1996	2004	2 74
	/ Norago Bata			

SID	Description	Start	End	Rpts K
120	PMEL TAO/TRITON and PIRATA Research Archive Hourly Average SLP Data	2000	2004	222
121	US National Data Buoy Center (NDBC) Data (obtained from NCDC 2005-2007)	1998	2004	7 768
122	US NDBC data (NODC f291 archive version translated by NCDC 2008)			
123	[reserved]			
124	Climatological Database for the World's Oceans (CLIWOC; Release 2.0)			
125	US Marine Meteorological Journals Collection	1878	1894	1 761
126	Royal Navy Ship's Logs (keyed by 2007)	1936	1955	1 423
127	Antarctic Expeditions: Print./Published (held at Met Office)	1898	1940	35
128	[reserved]			
129	Byrd Antarctic Expedition (keyed by Hollings Scholars)	1929	1934	1
130	Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS: WOCE ver.3.0	1990	1998	56
131	Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS: SAMOS			
132	Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS: Other			
133	Climatological Database for the World's Oceans (CLIWOC; Release 2.1)	1662	1855	261
134	Deutscher Wetterdienst (DWD) Marine Meteorological Archive: Compo Subset	1884	1914	580
135	DWD Marine Meteorological Archive: Newly Digitized Data	1876	1902	395
136	DWD Marine Meteorological Archive: HISTOR Data	1882	1899	<1
137	NODC/OCL 2005 World Ocean Database (WOD05) updated through 13 Dec. 2007	1772	2005	7 738
138	ACRE Data: Challenger Expedition	1872	1876	16
139	German Deep Drifter Data (via ISDM; originally from IfM/Univ. Kiel)	1980	1996	1 031
140	US Navy Hourlies: Deck 117 in TD-1100 format			
141	US Navy Hourlies: Original card deck 117 format (from FOSDIC)			
142	US Navy Hourlies: Original card deck 117 format (from DSI1117)			
143	Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships			
144	US Lightship Collection: Woods Hole Oceanographic Institution			
145 ⁴	US Lightship Collection: National Archives and Records Admin.			

1. Some of these SIDs (ref. LMR documentation) were used in ICOADS prior to R2.5; others have not been used.

2. Originally SID 22 was assigned to *Islas Orcadas* (see *Release 1*, supp. F), but the data were never translated.

3. LMR documentation provides a breakdown of descriptions for SID range.

4. Tentative source ID assignment—data are not yet available.

56) PT platform type

The type of observing platform:

- 0 US Navy or "deck" log, or unknown
- 1 merchant ship or foreign military
- 2 ocean station vessel—off station or station proximity unknown
- 3 ocean station vessel—on station
- 4 lightship
- 5 ship
- 6 moored buoy
- 7 drifting buoy

- 8 ice buoy [note: currently unused]
- 9 ice station (manned, including ships overwintering in ice)
- 10 oceanographic station data (bottle and low-resolution CTD/XCTD data)
- 11 mechanical/digital/micro bathythermograph (MBT)
- 12 expendable bathythermograph (XBT)
- 13 Coastal-Marine Automated Network (C-MAN) (NDBC operated)
- 14 other coastal/island station
- 15 fixed ocean platform (plat, rig)
- 16 tide gauge
- 17 high-resolution Conductivity-Temp.-Depth (CTD)/Expendable CTD (XCTD)
- 18 profiling float
- 19 undulating oceanographic recorder
- 20 autonomous pinneped bathythermograph
- 21 glider

Background: *PT* settings 0-4 are derived from the "OSV or Ship Indicator" in NCDC (1968); *PT* settings 0-1 are very poorly documented and probably should be regarded as equivalent to ship data (*PT*=5).

57) DUPS dup status

Indicates duplicate status (Table D8). For the final R2.5 product, reports with *DUPS*>2 were not output (and landlocked *LZ*=1 reports were eliminated; see *R2.5-stat_trim* [note: in preparation]). However, to allow for more detailed analysis of the processing results and possible adjustments, all those flagged reports were retained in the R2.5 "intermediate" product (see Supp. E).

Background: Matches predecessor field DS in LMR format.

Table D8. Duplicate status (*DUPS*) assignments. In previous Releases, "certain" (C) duplicates were eliminated from the LMR output, and then "uncertain" (U) duplicates were eliminated from LMRF. Settings marked by footnotes apply only to pre-1980 data.

Elinity is belings marked by locinotes apply only to pre-1900 data.				
<u>DUPS</u>	<u>U/C</u>	<u>Description</u>		
0		unique		
1		best duplicate		
2		best duplicate with substitution		
3	U	worse duplicate: uncertain weather element match with hour cross ¹		
4	U	worse duplicate: uncertain weather element match with no cross		
5	U	worse duplicate: uncertain weather element match with day cross ²		
6	U	worse duplicate: time/space match with ID mismatch (unused until 1950)		
7	U	worse duplicate: certain weather element match with hour cross ¹		
8	С	worse duplicate: certain weather element match with no cross		
9	С	worse duplicate: combined DUPS 4 and 6		
10	С	worse duplicate: combined DUPS 6 and 8		
11	С	worse duplicate: time/space/ID match		
12	С	worse duplicate: combined DUPS 4 and 11		
13	С	worse duplicate: combined DUPS 8 and 11		
14	С	automatic data rejection		

1. For *Release 1*, applied to 1854-1979 data; for Release 2.0 applied to 1784-1979 data.

2. For *Release 1*, applied to 1854-1969 data; for Release 2.0 applied to 1784-1969 data.

58) DUPC dup check

The presence of a duplicate match between a Global Telecommunication System (GTS) and logbook (or other delayed-mode) report may provide some location verification, with

greater credibility if *SLP* and *SST* match under "allowances." *DUPC* indicates whether such matches were detected during duplicate elimination processing (either the GTS or delayed-mode report is retained in the output data mixture), in case users might wish to make use of this information for independent quality control purposes:

- 0 GTS and logbook match with SLP and SST match
- 1 GTS and logbook match without *SLP* and *SST* match
- 2 not GTS and logbook match

Background: Matches predecessor field *DC* in LMR format.

59) TC track check

TC, if set, indicates if a report was:

- 0 not track checked
- 1 track checked

Background: Indicator unused prior to Release 2.0; still missing in most data.

60) PB pressure bias

PB, if set, indicates questionable sea level pressure data:

- 0 questionable *SLP*: level 0: individual platform (unused)
 - 1 questionable *SLP*: level 1: deck
 - 2 questionable *SLP*: level 2: deck
 - Background: All indicator settings unused prior to Release 2.0; still missing in most data (see LMR documentation for additional information).

61) WX wave period indicator

62) SX swell period indicator

Unless missing, *WX* and *SX* indicate that the wave and swell periods were converted from code into whole seconds:

1 – period converted from code into whole seconds

63) C2 2nd country code

The country of immediate receipt (C2), which may differ from the recruiting country (C1) and may also differ from the ship's registry.

Background: *C2* was tracked for some earlier receipts of International Maritime Meteorological (IMM) logbook data, but IMM data are now generally received via Global Collecting Centres (GCCs; in Germany and UK). Thus this field is generally missing (see *C1*, field 16 for additional information).

QC elements

64-75) SQZ-DQA	adaptive QC flags
76) <i>ND</i>	night/day flag
77-82) SF-RF	trimming flags
83-96) ZNC-TNC	NCDC-QC flags
97) QCE	external (e.g. MEDS)
98) <i>LZ</i>	landlocked flag
99) QCZ	source exclusion flags

Quality control and related flags, described in detail in *R2.5-stat_trim* [note: in preparation].

IMMT-2/FM 13 attm (C2)

100) *ATTI* attm ID 101) ATTL attm length (See fields 197-198.)

Common for IMMT-2/-1

102) OS observation source

For International Maritime Meteorological (IMM) logbook data, OS shows the observation source:

- 0 unknown
- 1 logbook
- national 2 – telecommunication channels national
- 3 publications

6 – publications

national

- 4 logbook
- 5 telecommunication channels

international data exchange international data exchange

international data exchange

For IMMT-4 this modified configuration is planned:

- 0 unknown
- 1 logbook (paper)
- 2 national telecommunication channels
- 3 national publications
- 4 logbook (electronic)
- 5 global telecommunication channels (GTS)
- 6 international publications

Background: Because the modified IMMT-4 configuration (developed because of deficiencies in the existing configuration) is not backward compatible. IMMT version (see Supp. B, Table B1; not presently available as a regular field in IMMA) will be required to properly interpret the revised information, if stored in this same field.

103) *OP* observation platform

For International Maritime Meteorological (IMM) logbook data, OP shows the observation platform:

- 0 unknown
- 1 Selected ship
- 2 Supplementary ship
- 3 Auxiliary ship
- 4 automated station/data buoy
- 5 fixed sea station
- 6 coastal station
- 7 aircraft
- 8 satellite
- 9 others

For IMMT-4 this modified configuration is planned:

- 0 unknown
- 1 Selected ship
- 2 Supplementary ship
- 3 Auxiliary ship
- 4 registered VOSClim ship

- 5 fixed sea station (e.g. rig or platform)
- 6 coastal station
- 7 [reserved]
- 8 [reserved]
- 9 others/data buoy

Background: Because the modified IMMT-4 configuration (developed because of deficiencies in the existing configuration) is not backward compatible, IMMT version (see Supp. B, Table B1; not presently available as a regular field in IMMA) will be required to properly interpret the revised information, if stored in this same field.

104) FM FM code version

GTS traditional alphanumeric SHIP code "FM" version (see WMO 2009a).

Background: A 1-character field in IMMT (see Supp. B, Table B1) extended to two characters in IMMA to allow for expansion. Yoshida (2004) describes use at least back to 1949 of the "FM" notation (e.g. in FM 21 SHIP and FM 22 SHIP).

105) IX station/weather indicator

106) W2 second past weather

IX (WMO Code 1860) indicates both whether the station is manned or automatic, and the status of present (*WW*, field 23) and past (*W1*, *W2*; WMO Code 4561, see field 24) weather data:

- 1 manned included
- 2 manned omitted (no significant phenomenon to report)
- 3 manned omitted (no observation, data not available)
- 4 automatic included [using WMO Codes 4677 and 4561]
- 5 automatic omitted (no significant phenomenon to report)
- 6 automatic omitted (no observation, data not available)
- 7 automatic included using WMO Codes 4680 and 4531

Background: Starting 1 Jan. 1982, the procedure for reporting present (*WW*) and past (*W1*, *W2*) weather in FM 13 was altered significantly by adding *IX*, which allowed the "7 group" (7wwW₁W₂ for manual stations, and usually 7w_aw_aWa₁Wa₂ for automatic stations) to be omitted when there was no significant present or past weather to report (see Hahn et al. 1992). However, to improve climatological data quality, starting 2 Nov. 1994 FM 13 was again modified so that any present and past weather including phenomena without significance shall be reported (see WMO 2009a, Reg. 12.2.6.2). [Note: Refer to the LMR documentation for more information regarding use of *IX* with present and past weather data, and unforeseen complications attending its introduction in 1982 (e.g. *IX* was not included in IMMT until 1 March 1985). *IX*=4 was initially defined (WMO 1981) without the Code references (hence brackets above), and *IX*=7 was introduced at a later date. The *IX*=7 value was not included in LMR, thus future work should seek to recover this information for data that were translated to IMMA from LMR.]

107) SGN	significant cloud amount
----------	--------------------------

109) SGH significant cloud height

Use of "A" (10 in base36) in place of "/."

Background: These significant cloud fields are listed in Met Office (1948), but appear to have been omitted from regular IMM fields (see Table B3) and the current FM 13 code; in presently available ICOADS data they should always be missing [Note: Since these appear to be strictly historical fields, deletion from this

attachment and possible repositioning within Table C5 is suggested for future consideration).1

110) *WMI* indicator for wave measurement

WMI corresponds to the IMMT-4 "indicator for wave measurement":

- 0 wind sea and swell estimated
- 1 wind sea and swell measured
- 2 mixed wave measured, swell estimated
- 3 other combinations measured and estimated
- 4 wind sea and swell measured
- 5 mixed wave measured, swell estimated

8 – mixed wave measured, swell estimated

- 6 other combinations measured and estimated
- 7 wind sea and swell measured

shipborne wave recorder shipborne wave recorder shipborne wave recorder buov buoy

buoy

other measurement system other measurement system

- 9 other combinations measured and estimated other measurement system Background: Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

111) SD2 swell direction (2nd)

112) SP2 swell period (2nd)

113) SH2 swell height (2nd)

Configurations as for SD, SP, and SH (fields 46-48).

Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

114) IS ice accretion

Accretion on the ship according to WMO Code 1751:

- 1 = icing from ocean spray
- 2 = icing from fog
- 3 = icing from spray and fog
- 4 = icing from rain
- 5 = icing from spray and rain

115) ES ice thickness

Ice accretion thickness on the ship in centimeters.

116) RS ice accretion rate

Accretion rate on the ship according to WMO Code 3551:

- 0 = ice not building up
- 1 = ice building up slowly
- 2 = ice building up rapidly
- 3 = ice melting or breaking up slowly
- 4 = ice melting or breaking up rapidly
- 117) *IC1* concentration of sea ice
- 118) *IC2* stage of development
- 119) *IC*3 ice of land origin
- 120) *IC4* true bearing ice edge
- 121) *IC5* ice situation/trend

shipborne wave recorder

The fields changed dramatically in 1982 (field names reflect the 1982 Codes):

<u>1982</u>	pre-1982
f ice (WMO Code 0639)	description of ice type
elopment (WMO Code 3739)	effect of ice on navigation
n (WMO Code 0439)	bearing of principal ice edge
ncipal ice edge (WMO Code 0739)	distance to ice edge
nd (WMO Code 5239)	orientation of ice edge
relopment (WMO Code 3739) n (WMO Code 0439) ncipal ice edge (WMO Code 07	effect of ice on navigation bearing of principal ice edge distance to ice edge

IMMA stores the old/new information as listed above in the same field, thus making it critical that users be aware of the code change. Configurations are as in IMMT-4, except for use of "A" (10 in base36) in place of "/."

Background: Separate fields (or an Code indicator) could be considered in the future. Earlier historical ice codes might also need to be researched for possible consideration. Met Office (1948) lists an Ice Group (c_2KD_ire) that may be similar or identical to the above pre-1982 code (see also Table B3 of Supp. B). [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

122) *IR* indicator for precipitation data

123) RRR amount of precipitation

124) *TR* duration of period of reference for amount of precipitation

WMO Codes 1819, 3590, and 4019, respectively. Configurations are as in IMMT-4. Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

125) QCI quality control (QC) indicator

Field QCI provides general information about the level of manual and/or automated quality control (QC) that has been applied to the data, including usage if indicated of time sequence checks and possible usage of the standardized Marine QC (MQC) software. Configuration as in IMMT-4 (draft amended documentation):

- 0 no QC has been performed
- 1 manual QC only
- 2 automated QC only (such as using only MQC)
- 3 automated QC only (with time sequence checks)
- 4 manual and automated QC (superficial)
- 5 manual and automated QC: (superficial; with time-sequence checks)
- 6 manual and automated QC: (intensive; with time-sequence checks)
- 7 [reserved]
- 8 [reserved]
- 9 national system of QC (information to be furnished to WMO)

Background: Prior to IMMT-4, values 7-8 were instead termed "not used." [Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

- <u>126) Q/1</u> QC indicator for height of clouds
- 127) Q/2 QC indicator for visibility
- 128) Q/3 QC indicator for clouds
- 129) Q/4 QC indicator for wind direction
- 130) Q/5 QC indicator for wind speed
- 131) Q/6 QC indicator for air temperature
- 132) Q/7 QC indicator for dew-point temperature
- 133) Q/8 QC indicator for air pressure

134) Q/9 QC indicator for weather

135) Q/10 QC indicator for sea surface temperature

136) QI11 QC indicator for period of wind waves or of measured waves

137) Q/12 QC indicator for height of wind waves or of measured waves

138) QI13 QC indicator for swell

139) QI14 QC indicator for precipitation

140) Q/15 QC indicator for characteristic of pressure tendency

141) QI16 QC indicator for amount of pressure tendency

142) Q/17 QC indicator for true direction of ship

143) QI18 QC indicator for ship's average speed

144) Q/19 QC indicator for wet-bulb temperature

145) Q/20 QC indicator for ship's position

Twenty *QI* indicators applicable to individual fields or field groups (further details are available in Supp. B, Table B2; which also lists additional QC indicators available in IMMT-3/-4). Configuration as in IMMT-4 (draft amended documentation), indicating quality control (QC) as applied by the Contributing Member (CM) and/or by the Global Collecting Centres (GCCs). Values 6-7 are set when the original flag settings were amended by the GCCs using the Minimum Quality Control Standard (MQCS):

0 – no QC has been performed on this element

1 – QC performed; element appears correct

2 – QC performed; element appears inconsistent with other elements

3 – QC performed; element appears doubtful

4 – QC performed; element appears erroneous

5 – QC performed; element changed (possibly to missing) as a result

6 - QC flag amended: element flagged by CM as correct (1), but according to MQCS still appears suspect (2-4) or is missing (9)

7 – QC flag amended: element flagged by CM as changed (5), but according to MQCS still appears suspect (2-4)

8 – [reserved]

9 – element is missing

Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR, plus additional QC indicators available in IMMT-3/-4.]

New for IMMT-2

146) QI21 MQCS version

Version identification for the Minimum QC Standard (MQCS), with this expanded configuration defined for IMMT-4:

1 – MQCS- I (Original version, Feb. 1989): CMM-X

2 – MQCS-II (Version 2, March 1997) CMM-XII

3 – MQCS-III (Version 3, April 2000) SGMC-VIII

4 - MQCS-IV (Version 4, June 2001): JCOMM-I

5 – MQCS-V (Version 5, July 2004): ETMC-I

6 – MQCS-VI (this version, to be agreed)

[Note: etc. for future configurations]

Background: [Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

147) HDG ship's heading

Direction to which the ship's bow is pointing, referenced to true North (0-360°; e.g. 360° = North, 0 = no movement, 90° = East).

Background: According to IMMT-2/-3 documentation, as well as preliminary documentation for IMMT-4, 0 indicates no movement. However, KNMI has suggested that even if the ship is not moving it always has a heading, and therefore zero should not be reported for *HDG* (in contrast to *COG*).

148) COG course over ground

Direction the vessel actually moves over the fixed Earth, referenced to true North (0- 360° ; e.g. 360° = North, 0 = no movement, 90° = East).

149) SOG speed over ground

Speed the vessel actually moves over the fixed Earth, rounded to the nearest whole knot.

150) SLL max.ht.>Sum. load In.

Maximum height of deck cargo above Summer maximum load line (reference level), rounded to the nearest whole meter.

151) SLHH departure of Summer max. load line from actual sea level

Departure of reference level (Summer maximum load line) from actual sea level. Difference to the nearest whole meter (0-99) between the Summer maximum load line and the sea level (water line); positive when the Summer maximum load line is above the level of the sea, and negative if below the water line.

152) RWD relative wind direction

Relative wind direction in degrees $(1-360^{\circ})$ reported in a clockwise direction off the bow of the ship, using 360° when directly on the bow, or special code 361 (as for *D*, field 18) for calm.

Background: It appears that no guidance currently exists for reporting *RWD* when *D* is reported as "variable, or all directions" (i.e. special code 362).

153) RWS relative wind speed

Reported in either whole knots or whole meters per second (e.g. 10 knots or 5 m/s), with units established by *WI* (field 18). RWS is a 3-character field to store values of RWS larger than ff (if WI indicates knots), e.g. ff=98 knots, RWS=101 knots; see also element 15.

Background: Fields added to IMMT-2 for VOSClim. [Note: Fields 147-153 were not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

Model quality control attm (C3)

<u>154) ATTI attm ID</u> <u>155) ATTL attm length</u> (See fields 197-198.)

GTS bulletin header fields

156) CCCC collecting centre

157) BUID bulletin ID

These two fields are part of the "abbreviated heading" (WMO 2009c), providing product identification for purposes of transmission and communication handling ref., <u>http://www.nws.noaa.gov/oso/oso1/oso15/oso153/SECC123.htm</u>). Specifically, *CCCC* is the "international four-letter location indicator of the station or centre originating or compiling the bulletin, as agreed internationally, and published in WMO–No.9, Volume C1, *Catalogue of Meteorological Bulletins*;" and *BUID* provides "data designators" (T₁T₂A₁A₂ii; see Background, and WMO 2009c for a detailed description).

Background: Using traditional alphanumeric codes, individual (ship or buoy) reports are transmitted over GTS beginning with the identification group $M_i M_i M_j M_j$ (e.g. BBXX or ZZXX used to indicate the SHIP or BUOY code, respectively) and collected together to form the "text" (i.e. content) of a "bulletin" (which when enveloped with an initial line and end-of-message signal constitutes the "message"). The initial information includes an abbreviated heading of the form:

T₁T₂A₁A₂ii CCCC YYGGgg (BBB)

where in the context of marine data (see <u>http://www.nws.noaa.gov/tg/head.html</u>): T_1T_2 : Data type and/or form designators

A₁A₂: Geographical and/or data type and/or time designators

ii: Used to differentiate two or more bulletins which contain data in the same code, originate from the same geographical area, and have the same originating center.

CCCC: International 4-letter location indicator of the station originating or compiling the bulletin (e.g. KWBC = Washington, NOAA)

YYGGgg: International date-time group (YY: day of month; GGgg: hour and minute)

(BBB): (optional) for delayed (RR_x) reports, or corrections (CC_x) or amendments (AA_x) to previously relayed reports

The additional elements YYGGgg and BBB making up the abbreviated heading could potentially be important, but are not presently retained e.g. in the UK Met Office VOSClim data. For example, the BBB information could be important to correct information that was not properly relayed initially, and later in the event errors are made in the decoding of the data (e.g. BBB data are not properly handled) there may be no opportunity to reprocess the data properly if header information is not archived. *CCCC* information may be important to determine transmission details (e.g. origination from Local Users Terminals for drifting buoy reports), but the significance of any of this information has not been fully determined.

Model comparison elements

158) *BMP*

159) BSWU	bckd. wind U-component
160) SWU	derived wind U-component
161) BSWV	bckd. wind V-component
162) SWV	derived wind V-component
163) BSAT	bckd. air temperature
164) BSRH	bckd. relative humidity
165) SRH	(derived) relative humidity
166) SIX	derived stn./wea. indic. (unused)
167) BSST	bckd. SST
<u>168) MST</u>	model surface type
169) MSH	model height of surface
470 01	halad some

background (bckd.) SLP

- 170) BY bckd. year
- 171) BM bckd. month
- 172) BD bckd. day
- 173) BH bckd. hour

174) *BFL* bckd. forecast length (do not use; erroneous in R2.5 data)

Model quality control feedback information.

Background: Upon receipt of each GTS report from a VOSClim ship, the VOSClim Real Time Monitoring Centre (RTMC; at the UK Met Office) appends co-located parameters (and related information) from the Met Office forecast model for six variables—*SLP*, wind U- and V-component, air temperature, relative humidity, and *SST*—to a selection (translated into BUFR) of the originally reported GTS data. These augmented ship reports are made available in BUFR format to the VOSClim Data Assembly Center (DAC; at NOAA/NCDC), which converts them into IMMA format, including this attachment. Presently *SIX* is unused (should always be missing) because it is not among the fields in the input UK BUFR format. [Note: In R2.5 data, *BFL* was recently discovered to be subject to a conversion error and should not be used. Additionally, the original BUFR field that provides *BFL* is in minutes, thus future consideration should be given to the possibility, if appropriate, of changing the representation of *BFL* to an improved form.]

Ship metadata attm (C4)

<u>175) ATTI attm ID</u> <u>176) ATTL attm length</u> (See fields 197-198.)

Ship metadata elements

177) <i>C1M</i> recruiting country

178) OPM type of ship (programme)

178) KOV kind of vessel

- 180) COR country of registry
- 181) TOB type of barometer
- 182) TOT type of thermometer
- 183) EOT exposure of thermometer

184) LOT screen location

<u>185) TOH type of hygrometer</u>

- 186) EOH exposure of hygrometer
- 187) SIM SST measurement method

188) LOV length of vessel

- 189) DOS depth of SST measurement
- 190) *HOP* height of visual observation platform
- 191) HOT height of air temperature sensor
- 192) *HOB* height of barometer
- 193 HOA height of anemometer
- 194) SMF source metadata file

195) SME source metadata element

196) SMV source format version

Metadata selected from WMO–No. 47 (1955–) by the UK National Oceanography Centre, Southampton (Kent et al. 2007a, Berry et al. 2009). Some deck 740 (Research Vessel Data Quality-Evaluated by FSU/COAPS) metadata have also been stored in this attachment (see Berry et al. 2009).

Background: The codes defined in WMO–No. 47, and used in IMMA, for *OPM* and *SIM* differ from the codes used for the similar fields *OP* and *SI*. Prior to 1995 a 3-digit numeric code was defined in WMO–No. 47 for *C1M*; starting in 1995, WMO–No. 47 adopted the 2-character ISO alphabetic code, which was in 1998 also adopted for IMMT. For *C1M*, the earlier 3-digit numeric codes were transformed by NOCS into the 2-character alphabetic codes.

Historical attm (proposed) (C5)

tbd) ATTI	attm ID
tbd) ATTL	attm length
(See fields	197-198.)

Historical data fields (field numbering to be decided)

tbd) WFI wind force indica	tor
----------------------------	-----

tbd) WF wind force

tbd) XWI XW indicator

tbd) XW wind speed (extension field for W)

tbd) XDI XD indicator

tbd) XD wind direction code (extension field for D)

WFI and *WF* are proposed primarily for 0-12 Beaufort wind force codes, but potentially could be extended to other 2- or 1-digit codes, with *WFI* indicating the type of information, e.g.: 0-6 (half Beaufort code in 19th century Norwegian logbooks), Ben Nevis Observatory code. *XWI* and *XW* are proposed for equivalent wind speed, with *XWI* indicating the scale used to convert from *WF* (e.g. the existing WMO Code 1100 scale or newer alternatives). Similarly, fields *XDI* and *XD* are proposed for older 2- or 1-digit wind direction codes, with *XDI* indicating the type of information, e.g.: 32-, 16-, or 8-point compasses.

tbd) SLPI SLP indicator

tbd) TAI TA indicator

tbd) TA SLP attached thermometer

SLPI is proposed for historical data to indicate the barometer type (e.g. mercurial, aneroid, or metal). *TAI* (configuration undecided, but probably similar to some of the other temperature indicators) and *TA* are proposed for older mercurial barometer data, in which the attached thermometer is critical for data adjustments.

tbd) XNI XN indicator

tbd) XN cloud amount (extended field for N)

XN is proposed for historical cloud amount data (e.g. in tenths), with XNI indicating the units (e.g. tenths).

Supplemental data attm (C6)

<u>197) ATTI attm ID</u>

198) *ATTL* attm length

199) ATTE attm data encoding

200) SUPD supplemental data

Each attm begins with *ATTI* and *ATTL*. *ATTI* identifies the attm contents, and *ATTL* provides the total length of the attm (including *ATTI* and *ATTL*) in bytes, or zero for length unspecified (record terminated by a line feed; line feed not counted as part of *ATTL*). The supplemental data attm (C6) also includes *ATTE*, which indicates whether the supplemental data that follow are in Ascii or encoded:

missing – Ascii

0 – base64 encoding

The rdimma0 software tests to determine if each individual IMMA record is properly configured, including checking *ATTC* (ref. Table C0) against the number of attachments present. It requires that duplicate attms (i.e. two attms with the same *ATTI*) not appear in a record. The software does not require that attachments appear in any particular order by *ATTI*, with one exception: the supplemental data attm must be the final attm within the record if *ATTL*=0.

Supplement E: ICOADS Release 2.5 IMMA Status

This supplement provides additional technical information on the IMMA implementation presently used for Release 2.5 (R2.5; 1662-2007), plus for "preliminary" data (based exclusively on NCEP BUFR GTS receipts) extending ICOADS to near-current dates.

As described in Supp. C, the two basic records types used for ICOADS are (see Table E1 for more information about the individual format components):

- ICOADS-standard structure: C0 + C1 + C2 + C3 + C4 + C6 (372 characters, before C6)
 NCDC-variant structure:
 - C0 + C1 + C2 + C3 + C6 (315 characters, before C6)

However, the attachment structure of IMMA (and rdimma0 software) was designed with the capability to save space through omission of empty attachments (i.e. information not relevant, or not available, for a given dataset). We utilize this feature for the ICOADS-standard structure. Conversely NCDC uses the NCDC-variant structure in a fixed-length form (before C6) for serving ICOADS and other marine data. When R2.5 is written out in that structure total volume size is 106.4 GB (~37% larger than the full archive stored in the dynamic ICOADS-standard structure) (see Table E2).

The NCDC-variant format also has these additional differences with respect to the ICOADS-standard IMMA representation:

(i) Date and time (*MO*, *DY*, and *HR*) are represented with leading zeros (e.g. *YR*, *MO*, *DY*, and *HR*: "200707010000"). This contrasts with the otherwise uniform numeric format model of IMMA, which has no leading zeros (e.g. "2007 7 1 0"). (ii) Longitude is expressed according to the NCDC convention (-179.99° to 180.00°E) as opposed to the ICOADS-standard convention (0.00° to 359.99°E). (iii) *NID* is set differently for data distributed by NCDC (see Supp. D).

Another new product development for ICOADS at R2.5 is the "intermediate" data product, which includes available duplicates and landlocked reports, flagged so that they can be readily removed to create the "final" R2.4 user product (leading to a ~13% reduction in the number of reports as shown in Table E2). R2.5 contains a number of known unresolved inhomogeneities and data mixture problems (Woodruff et al. 2010; <u>http://icoads.noaa.gov/r2.5.html</u>). Particularly for some of the data mixture issues, the intermediate product is available for further study or potentially to develop improved solutions.

For example, WMO–No. 47 (1955–) metadata (Berry et al. 2009) were blended into the intermediate product, partly in recognition that in some cases only duplicates not selected for final output received the metadata (e.g. due to the lack of a ship call sign in duplicates selected for final output). Another incompletely resolved R2.5 issue for which the intermediate data could be utilized concerns the VOSClim data and metadata, which have not yet been practical to provide in the form of a fully merged dataset (e.g. possibly bringing elements from the GTS and logbook reports, together with the C3 QC feedback information, into composited reports).

Table E1. Sizes of IMMA format components: Core and attachments (attm) (C5 is still under development). For the ICOADS-standard, actual records sizes may be smaller (e.g. for R2.5 final data in Table E2, the average size of ~298B is less than nominal size of Core+C1+C2+C4+C6 = 306B) because of the omission of empty attachments, and because any trailing blanks are omitted at the end of the last attachment.

Abbrev.	<u>Name</u>	<u>Size (B)</u>	<u>Cumulative</u>	<u>Comments</u>
			<u>size (B)</u>	
C0	Core	108	108	
C1	ICOADS attm	65	173	
C2	IMMT-2/FM 13 attm	76	249	
C3	Model quality control attm	66	315	
C4	Ship metadata attm	57	372	From WMO–No. 47 for 1966-
				2007; plus from COAPS (deck
				740; 1990-98) ²
C5	Historical attm	(tbd)		
C6	Supplemental data attm ¹	variable		

1. For ICOADS Release 2.4, 1784-1997 IMMA were recreated using LMR to merge important supplemental data (into C6). As resources permit, those supplemental data should be tapped for regular fields not previously defined in ICOADS but now available in IMMA (e.g. sea ice fields), or planned for availability in IMMA in historical attm (e.g. Beaufort wind force numbers).

2. The WMO–No. 47 metadata were blended into the intermediate R2.5 product (see Table E2), whereas the COAPS metadata were blended into the final R2.5 product (see Berry et al. 2009).

Table E2. Status and structure of NCDC and NCEP GTS data (the latter currently forming the exclusive source for the "preliminary" ICOADS extension), compared with R2.5 IMMA (ICOADS-standard) data. The "intermediate" R2.5 product contains flagged duplicates and landlocked reports. Record sizes in bytes, and total sizes (10⁹ bytes) uncompressed.

Archive	Period	<u>Reports</u>	<u>Structure</u>	<u>Rec. size</u>	<u>Total size</u>
NCDC GTS	~2003→	n/a	C0+C1+C2+C3+C6	~421 ¹	n/a
prelim. (NCEP)	2008→	n/a	C0+C1[+C2]+C6	~322 ¹	n/a
R2.5 intermediate	1662-2007	294,725,525	C0+C1[+C2+C3+C4+C6]	~292 ²	86.2 GB
R2.5 (final)		260,803,686	C0+C1[+C2+C3+C4+C6]	~298 ²	77.8 GB
R2.5 (Core only)	"	п	C0	108	28.2 GB

1. Average record size. The supplemental (e.g. original GTS message) data (C6) may be variable-length (NCDC average report-length from July 2007 GTS data). Differences also exist in the amounts of original GTS data and bulletin header information retained for NCDC vs. NCEP.

2. Average record-sizes; [square brackets] indicate that C2, C3, C4, and C6 were attached only if they contained extant data/metadata. Thus far, C4 metadata have been attached only back to 1966 and C3 model QC information is only available (in deck 700) for 2003-07.

Document Revision Information

Previous document version: 14 June 2010. A few minor text corrections were made, and updates to two references (including DOIs). We reconsidered the document naming conventions, including for the complete and short versions of this document (previously called *imma* and *R2.5imma*), which are now called *R2.5-imma* and *R2.5-imma_short*, respectively. Another document (*R2.5qc*) referred to in the previous version of this document will now instead be named *R2.5-stat_trim* [note: however still in preparation]. In paragraph 11 of the main text, a parenthetical addition regarding BUFR was made stating that WMO does not intend that format for archival, etc. In Supp. D, for *BFL* (174; bckd. forecast length): a wording correction was made to the last sentence of the Background paragraph. For compatibility with other documentation "m s⁻¹" was (generally) changed to "m/s."