## Estimating Uncertainty of Historical SST Analyses by a Cross Validation Technique

### Yoshikazu Fukuda \*

## Masayoshi Ishii \*\*

# Shoji Hirahara \* \* CPD/JMA, \*\* FRCGC/JAMSTEC









- 1. Overview of the next COBE
- 2. Uncertainty estimation studies for the next COBE
  - Sampling error by Cross validation
  - Analysis error by measuring sensitivity of analysis parameters
- 3. Conclusion & Future plan

- Overview of the next COBE
- Uncertainty estimation studies for the next COBE
  - Sampling error by Cross validation
  - Analysis error by measuring sensitivity of analysis parameters
- 3. Conclusion & Future plan



## Introduction of Satellite data



- Overview of the next COBE
- Uncertainty estimation studies for the next COBE
  - Sampling error by Cross validation
  - Analysis error by measuring sensitivity of analysis parameters
- 3. Conclusion & Future plan

## **Estimating Uncertainty**

•There are differences among SST analyses especially before 1950.





- Overview of the next COBE
   Uncertainty estimation studies for the next COBE
  - Sampling error by Cross validation
  - Analysis error by measuring sensitivity of analysis parameters
- 3. Conclusion & Future plan

### Aim of the Cross Validation





## **Result - Global Mean**

- We can reproduce global mean SSTs by OI after the 1890s.
- It may be difficult to calculate "accurate" global mean SSTs by OI before the 1860s.
- Reconstruction improves the reproducibility.

#### Monthly Mean of OI analysis

#### **Reconstructed analysis**



### **Result - El Nino Reproducibility**

Pseudo analysis November 1997



- 1. Overview of the next COBE
- 2. Uncertainty estimation studies for the next COBE
  - Sampling error by Cross validation
  - Analysis error by measuring sensitivity of analysis parameters
- 3. Conclusion & Future plan

## Another Attempt – Sensitivity of analysis parameters

Experiment A: Adding random noise to observations Make 8 ensemble members by adding random noise to observations.

Experiment B: Changing analysis parameters



Make 9 ensemble members by using 3 patterns of analysis parameter (related to decorrelation scale) over adding 3 sets of random noise to observations.

#### Result of Exp A Adding random noise to observations

• At some points, large difference between SSTA and mean. result of QC  $\rightarrow$ → a measure of uncertainty

• Spread is larger in data sparse periods.



## Result of Exp B

Changing analysis parameters

- In fewer observation area differences are relatively large.
  - more susceptible to individual observations.
- In low latitudes spreads are relatively small.

→ too strong filtering?



## **Conclusion & Future plan**

### For the next COBE

#### **Approaches & Conclusions**

- Introducing satellite data
- Estimating Uncertainty by Cross Validation
  - Global mean SST can be reproduced 1890s observation distribution
  - 1930s observation distribution reproduce SST anomalies well.
  - by measuring the sensitivity of analysis parameters
    - Analysis results are depend on stochasticity of observations or analysis parameters.
- Future plan
- Cross Validation using satellite data
- Other patterns to make ensemble members

...and other improvements

