Modeling observational error of bin-averaged in situ climate data

Alexey Kaplan

Lamont-Doherty Earth Observatory of Columbia University

in collaboration with: **Mark A. Cane** Lamont-Doherty Earth Observatory of Columbia University

OUTLINE

- Small-scale and short-term variability in physical fields -> sampling error in their gridded representations from data
- Importance of knowing this error (for SST data)
- Estimating subgrid variability from satellite data
- Using it to model in situ error in SST

Sea Surface Temperature Anomaly from Reynolds and Smith's NCEP OI v.2: AVHRR and in situ SST blend

9-15 Nov 1997

Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), from U.K. Met Ofice and GHRSST, blend of many satellite data streams

20061006_UKMO_L4UHfnd_GL0B_v02.nc_720.pp Copyright Met Office 2006

Optimal Interpolation

 $T=T_B+e_B$ $HT=T_0+e_0$ $<e_B>=<e_0>=<e_Be_0^T>=0$ $<e_Be_B^T>=C$ $<e_0e_0^T>=R \leftarrow obs \ error \ covariance$

Solution minimizes the cost function $S[T]=(HT-T_o)^T R^{-1}(HT-T_o)+(T-T_B)^T C^{-1}(T-T_B)$

 $T = (H^{T}R^{-1}H + C^{-1})^{-1}(H^{T}R^{-1}T_{o} + C^{-1}T_{B})$

Dec 1868: Available observations

Dec 1868

Ability to attribute accurate observational error to historical ship data is especially important

Dec 1868: Available observations

"E 60"E 90"E 120"E 150"E 180"W 150"W 120"W 90"W 60"W 30"W 0 Longitude

Dec 1868: Reconstruction

30°E 60°E 90°E 120°E 150°E 180°W 150°W 120°W 90°W 60°W 30°W 0° longitude

What is the error in the binned obs mean (as estimates of the "true" bin area average)?

✻

✻

N obs

✻

✻

*

✻

✻

Error variance for the mean of N observ is σ^2/N

F(x,y) [or F(x,y,t)]

Will this formula work?

Can observations be viewed as randomly sampled?

Can we estimate σ from a reasonably well-sampled ICOADS period, will that be good enough?

Error in 4 degree ICOADS bins (NCEP OI analysis is used as "truth"): Actual and theoretical error variance differ by a factor of two [my talk at MARCDAT-1, Boulder, CO, Jan 2002]

sqrt [({ [RSA_COADS_sst obs] - NCEPOI_bm } ssta) squared] point mean: 0.68047 \pm 0.51474 range [0.14966 to 5.4339]

	1 1	1.1	1 1	1 1	1.1	1 I I		1	1 1	
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

Theoretical

sqrt [({ vRTG sstvar } squared) / (RSA_COADS_sst obs Nobs)] point mean: 0.47226 \pm 0.35218 range [0.0432598 to 2.1288]

	1 1	1.1		<u>, j</u>	1.1	1.1	<u>. 1</u>	1.1	1.1	11 . 11
0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

High-resolution brought in by satellite data can help pinpoint natural SST variability

MODIS Scanning Swath

Pathfinder SST: Monterey Bay, Oct 8, 1996 4km resolution

8 Oct 1996

What is the error in the binned obs mean (as estimates of the "true" bin area average)?

✻

✻

N obs

✻

✻

*

✻

✻

Error variance for the mean of N observ is σ^2/N

F(x,y) [or F(x,y,t)]

High spatial and temporal resolution of satellite data can help pinpoint natural SST variability on small scales (below 1 deg) and short terms (within 1 month).

A few weeks of background processing of 20 years of daily 4km maps of Pathfinder SST gave us the SST variability inside 1x1 monthly boxes estimated. [http://rainbow.ldeo.columbia.edu/~alexeyk/Satellite_SST.html]

> Small-scale variability in SST, ^oC Variability Temporal Variability

	1.1			n 1		1.1.1	
0	0.2	0.4	0.6	0.8	1	1.2	1.4

STD[**SST**] in ICOADS $1^{o} \times 1^{o}$ bins

Measurement error (or very small-scale variability) has to be taken into account

Effects of measurement error

120°E 150°E 180°W 150°W 120°W 90°W 60°W 30°E

18

Combining the two estimates to obtain σ:

Sampling error estimates for a single observation STD[SST] in $1^{\circ} \times 1^{\circ}$ monthly bins With the addition of KC2006 estimate

Does left look like right?

Modeling in situ data error for 1^o bins Modeled as $\langle \sigma / \sqrt{n_{obs}} \rangle$ Actual MODIS-ICOADS STD

90°E

120°E 150°E

180°

150°W 120°W 90°W

60°W

30°W

0

 $\begin{array}{c} {\rm Modeling\ in\ situ\ data\ error\ for\ 5^o\ bins}\\ {\rm Modeled\ as\ } \langle \sigma/\sqrt{n_{\rm obs}} \rangle & {\rm Actual\ MODIS-ICOADS\ STD} \end{array}$

0.6

0.7

0.8

0.9

0.3

	r 1			1	1	i I.			
0.2	0.4	0.6	0.9	-	1.2	1.4			

What we have learned 1. We can use variability estimates from satellite data to model sampling error. 2. In 1x1xmonth bins measurement error is not-negligible in comparison with natural SST variability. Individual in situ observations can be viewed as randomly distributed. **3.** In **5x5xmonth boxes the opposite is true** for the measurement error and probably for the obs distribution as well. Supported by NASA MODIS Science Team and NOAA CCDD and JCSDA grants