Summary of Results From the High-Resolution SST Workshop and the GODAE High-Resolution SST Pilot Project

Gary A. Wick<sup>1</sup> and Craig J. Donlon<sup>2</sup> <sup>1</sup>NOAA Environmental Technology Laboratory <sup>2</sup>JRC, Ispra, Italy

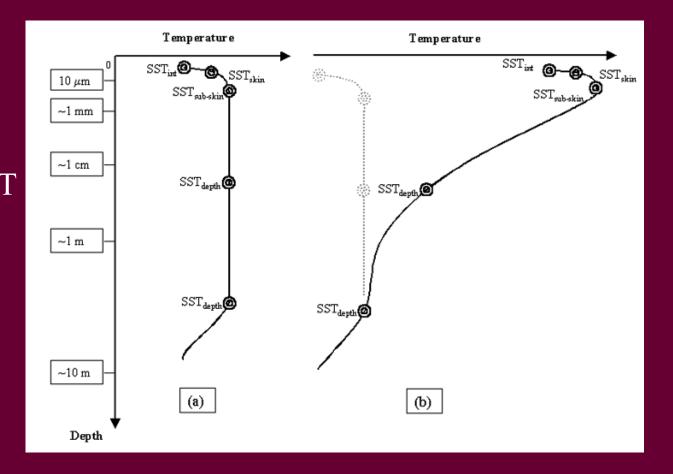
# GODAE High-Resolution SST Workshop

- 30 October 1 November, 2000
   Joint Research Center, Ispra, Italy
- ~30 International participants representing all fields of SST research and operations

### Objective

- Openly raise all issues associated with the development of a global, high-resolution SST dataset
  - Content, operations, feasibility, requirements, distribution, validation, etc

# Why?


- International GODAE Steering Team concluded:
  - The temporal and spatial resolution of existing SST data sets do not fulfill the requirements of GODAE and are not adequate for NWP, data assimilation, and ocean forecasting purposes.
- OOPC/AOPC Workshop on global SST datasets:
  - A broad range of SST product requirements including accuracy, spatial, and temporal resolution are not being satisfied.

#### Presentations

- Physical Character of SST
- Measuring and Estimating SST
- Processes Affecting SST Measurements
- Operational Implementation
  - Sampling, validation, and intercomparison
  - Assimilation and estimation
- Development of Plan

### Definition of SST

Interface SST
Skin SST
Sub-skin SST
Near-Surface SST or SST<sub>Depth</sub>

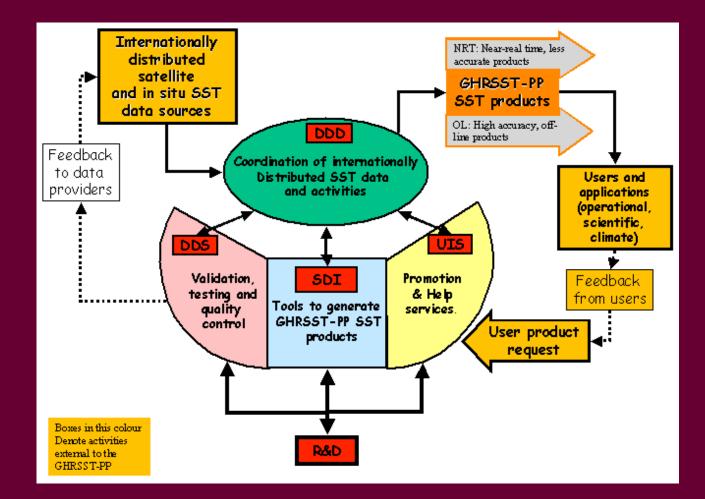


#### Workshop Conclusions

- Satellite and in situ SST measurements are fundamentally different and satellites offer the only practical means of producing a realistic global SST product
- Most appropriate method of providing high-accuracy SST products at high temporal and spatial resolution is by merging complementary satellite and in situ data
- Both skin and subsurface SST fields are required in both real-time and delayed modes at various temporal and spatial resolutions
- Although the datasets, knowledge, and tools are separately available, the formal combination of these resources needed is absent

# Workshop Conclusions

Agreed to develop a pilot project within the framework of GODAE


# GODAE High-Resolution SST Pilot Project

- Provide rapidly and regularly distributed, global, multisensor, high-quality SST products at a fine spatial and temporal resolution that meet the diverse needs of GODAE, the scientific community, operational users and climate applications at a global scale
  - Most promising solution to combine complementary infrared and passive microwave satellite measurements with quality controlled in situ observations from ships and buoys

## Strategic Objectives

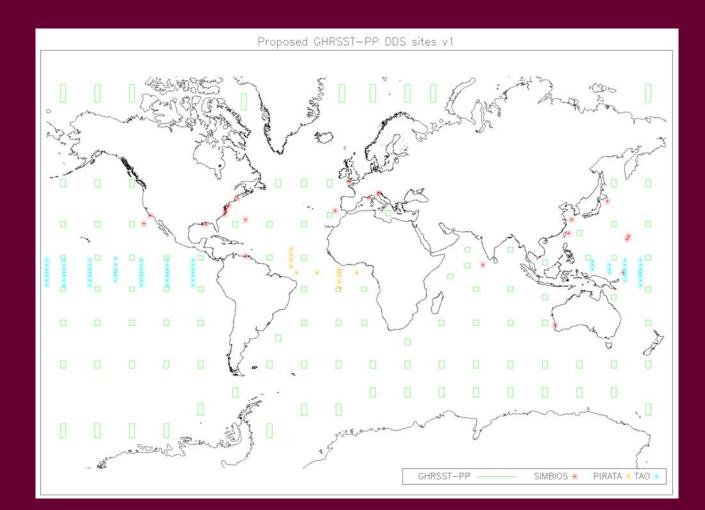
- Identify data providers and users and establish data access and exchange procedures
- Characterize quality of existing satellite and in situ data and identify fundamental differences
- Develop innovative data integration and assimilation methods
- Identify and promote needed research and development
- Implement user responsive demonstration system

#### Project Components



## Thematic Strategy

- I. Specification and delivery of SST products for diverse users and applications
- II. Characterization and identification of differences between SST fields from existing satellite and in situ data sources
- III. Targeted research and development
- IV. Generation of improved, multi-sensor SST products through integration and assimilation


# Specification and Delivery of SST Products

- Define scope and extent of the user community
- Develop a user information system
- Develop a distributed dynamic database system

#### Characterize SST Fields

- Develop methodology for testing, intercomparison, and validation of SST products
- Creation of Diagnostic Data Set infrastructure
- Generation of Diagnostic Data Sets
  - High resolution
  - Regional
  - Global

## Diagnostic Data Sets



#### Research and Development

- Developing optimal assimilation methods
- Determining optimal procedures for relating and merging measurements of the different SST quantities
  - Different depths
  - Different times
  - Different resolutions
- Ensuring accurate and consistent retrieval of SST from different sensors

#### Expected Users

- Numerical weather prediction
- Global/regional ocean applications
- Climate and long-term monitoring
- Oceanographic and meteorological research and technology
- Coastal, local, and regional industrial activities

### **Product Specifications**

- Global, cloud-free SST fields with high temporal (daily or better) and spatial (at least 10 km) resolution and accuracy better than 0.5 K
- Properly account for skin effect
- Account for temporal variability due to diurnal stratification
- Available in real-time and delayed modes at various resolutions
- Include estimates of uncertainties

#### Specific Products

•  $SST_{skin}$ : 6 hourly and 4 km grid + error statistics

- SST<sub>subskin</sub>: 6 hourly and 4 km grid + error statistics
- SST<sub>Depth</sub>: 12 hourly and 4 km grid + error statistics

#### **Product Uncertainties**

- Error statistics and confidence flags to help assess uncertainties in SST values
  - Data source
  - Proximity to cloud detection thresholds
  - Number of pixels used in averaging

### Validation Strategy

- Objective to obtain a coincident, long-term, cost effective suite of SST observations from a wide variety of in situ and satellite sensors for a range of atmospheric and oceanic conditions
  - Moored buoys
  - Drifting and profiling buoys
  - Ships of Opportunity (infrared radiometers)
  - Volunteer observing ships

#### Implementation Plan

- Preparation phase (2001-2002)
  - Targeted research
  - Establishment of infrastructure
- Operational phase (2002-2005)
  - Product production
  - Product delivery
  - Product validation

#### **Expected Scientific Benefits**

- Understanding systematic differences between diverse SST products
- Development of cross- and inter-satellite calibration strategies
- Inclusion of diurnal stratification and skin effects in global SST products